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Abstract

To preserve power quality in islanded alternating current (AC) microgrids
(MGs), precise line voltage regulation is crucial, especially in the presence
of non-linear and unbalanced loads. Effective coordination among multiple
distributed generation units is essential to meet the load requirements and
maintain system stability. Disparities in line impedance often lead to un-
equal power distribution among distributed generation units in microgrids.
This paper provides an overview of virtual impedance (VI) techniques and
droop control. Typically, these techniques are combined to achieve equitable
power distribution among dispersed generation units in microgrids with lines
of varying impedances. In a stable state, the frequency of the distributed
generation units within the microgrid remains uniform, facilitating accurate
active power sharing. However, the voltage measurements from distributed
generation units are often non-uniform, making reactive power sharing chal-
lenging in the microgrid. To address this issue, virtual impedance (VI)
can be introduced by placing an additional impedance virtually between
the inverter and the load in the physical circuit. This adjustment allows
for modification of the inverter’s control strategy. By integrating VI with
droop control, the impedance observed at the converter’s output is adjusted
to counteract the coupling effects between active and reactive power, thus
improving reactive power sharing and overall system performance in the
microgrid.
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1 Introduction

Energy is a fundamental element for most activities,
and its supply is influenced by various factors. With
the expansion of industrial centers and the increase
in consumption loads, there is a growing demand for
reliable, high-quality, and affordable energy. Conse-
quently, there is a need to increase energy production to
meet these demands [1, 2]. Renewable energies crucial
for addressing environmental and economic concerns
by mitigating the adverse effects of fossil fuel consump-
tion and promoting sustainable energy solutions [3, 4].
However, to transfer energy from remote areas to con-
sumption centers, extensive energy transmission net-
works are needed. These networks often face challenges
such as energy losses and reduced security margins for
maintaining network stability [5, 6]. The presence of
distribution networks can lead to frequent interruptions
and instability [7,8]. In recent years, economic, techni-
cal, and environmental factors have driven the expan-
sion of microgrids (MGs) connected with renewable en-
ergy sources (RESs) [9, 10]. The integration of energy
sources such as solar photovoltaics [11, 12], wind tur-
bines [13,14], and power storage elements [15,16] has fa-
cilitated the production of decentralized energy [17,18].
The integration of renewable energies and the use of
distributed generation (DG) units have reduced the
need to expand networks to supply power to remote
loads [19, 20]. However, the incorporation of DG into
the power system impacts several technical features of
the network, such as the system’s equivalent inertia and
the distribution of power among DG units [21,22]. Con-
sidering the intermittent and random characteristics of
RESs, power generation from distributed production
sources is subject to constant fluctuations [23,24]. The
differing voltage levels among each distributed genera-
tion (DG) unit complicate the configuration of reactive
power sharing. However, since all DG units typically
operate at the same frequency, active power sharing
remains relatively straightforward [25,26].

If the capacity of DG energy resources is lower
than the load demand, the system frequency will de-
crease [27]. DG energy sources provide customers with
clean and reliable electricity while reducing transmis-
sion and distribution losses. By utilizing local energy
sources, DG also minimizes energy loss in the power de-
livery system [28,29]. To maximize the benefits of inte-
grating distributed renewable resources into the power
system, it is crucial to optimize both the size and loca-
tion of these generation units. Improper placement of
distributed renewable generation units can lead to in-
creased system losses, voltage drops, higher harmonic
production, and reduced voltage stability [30,31]. The

incorporation of distributed production units into the
electrical energy system presents several challenges, in-
cluding issues related to the sensitivity of protection
systems, maintaining required voltage levels, and man-
aging fluctuations in emergency currents [32,33]. Oper-
ational stability and control are critical due to factors
such as frequency, voltage regulation, optimal power
transfer, and islanding detection in both microgrid op-
erational modes [34,35].

Dividing the reactive power produced by DG com-
ponents in a MG is challenging due to factors such as
transmission line impedance and other considerations
[36,37]. As the electricity industry expands and micro-
grids are increasingly used to mitigate problems, the
role of control systems has also become crucial [38,39].
VI is a control method used in conjunction with droop
control to regulate power and energy distribution in
microgrids. The droop control method allows for the
coordination of distributed generation facilities with-
out requiring direct communication between parallel
inverters [40, 41]. Given the increasing importance of
microgrids, several review studies have explored vari-
ous aspects of their implementation and management
[42,43]. One of the critical areas of focus for researchers
concerning microgrids (MGs) includes energy manage-
ment, control, stability, and protection [44,45]. Table 1
provides a summary of various review studies address-
ing these topics.

The Virtual Impedance (VI) method has been ap-
plied in various studies to enhance the performance of
microgrids (MGs) [46, 47]. Notable applications of VI
in MGs include: Designing harmonic VI to optimally
manage power quality [48], enhancing the power in-
verter output current regulator in unbalanced situa-
tions using VI [49], limiting fault current in inverter-
based distributed generation (DG) systems with VI
[50], and implementing VI control for an energy-sharing
approach [51]. One operational condition of microgrids
(MGs) is island mode, which occurs when the MG dis-
connects from the main network due to an error [52,53].
This article provides a brief overview of the Virtual
Impedance (VI) method in islanded alternating cur-
rent (AC) MGs for reactive power distribution. The
objectives of the review are as follows:

• Investigating the performance of alternating cur-
rent MGs in different operational modes

• Classifying MGs based on various parameters
• Investigating control methods related to loss and

VI in AC MGs.
• Presentation of existing simulation results on

control methods for loss and VI in AC MGs.

The arrangement of the article is as follows: In sec-
tion 2, two functional modes of the MG, including is-
landed and connected to the network, are described.
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The droop control approach does not require commu-
nication connections among the parallel power invert-
ers to coordinate between the DG facilities in the MG.
In section 3, the droop control approach is discussed,
including its advantages and disadvantages. Section 4
illustrates the use of virtual impedance (VI) in islanded

MG operation. It details how frequency droop, ampli-
tude droop, VI droop, and adaptive VI are controlled
by inverters to achieve proportional load sharing be-
tween parallel inverters, and section 5 provides the con-
clusion of the study.

Table 1. A number of review studies in different fields of microgrids.

Subject Ref. Research Prominence

Control

[54]

To meet load demands, coordination among multiple distributed generation (DG) facilities is essential.
Various control schemes have been developed to manage load distribution in DG networks using
parallel inverters. In order to coordinate among the DG units in the MG, the droop control approach
does not require a communication interface between parallel power inverters. Several droop control
strategies have been explored to facilitate coordination among DG units in the MG. Common issues
associated with droop control include reliance on line impedance, delayed transient response, and
improper power sharing.

[55]

Remote locations can reliably receive energy through direct current (DC) microgrids, but this requires
a robust control system. Hierarchical control mechanisms have been investigated and proposed to
provide reliable and efficient regulation for DC microgrids. In a hierarchical control system for direct
current (DC) microgrids, the control levels are structured as follows: 1. First Level: Manages current
and voltage adjustment. 2. Second Level: Addresses current and voltage error correction. 3. Third
Level: Regulates energy and power to minimize power losses.

Energy

Management

[56]

Energy management in MGs is an information and control system designed to optimize performance in
both production and distribution systems. It aims to ensure energy supply while minimizing costs. A
review of energy management in MG systems using renewable energy has been conducted. This review
includes a comparative analysis of optimization objectives, constraints, and simulation tools applied to
MGs in both operational modes.

[57]

The rapid reduction of fossil fuels and the need to protect the environment have heightened the
importance of integrating renewable energy sources (RESs) into the energy system to meet energy
demand. Investigations have focused on the architecture, control structure, and energy management
system of direct current (DC) microgrids. Different methods and strategies of energy management of
direct current MGs are presented, focusing on size and cost optimization. The review includes multiple
optimization techniques used to enhance the efficiency and economic feasibility of DC microgrid
systems.

Stability

[58]

The connection of scattered energy sources in the MG is typically established through inverters
interfacing with the city grid. As a result, the stability characteristics of the MG differ from those of a
traditional grid. A stability categorization technique for microgrids (MGs) is proposed based on the
MG’s characteristics, including its type of operation, the types of disturbances it encounters, and the
duration of those disturbances.

[59]

Given the rapid development of microgrids (MGs), it is essential to analyze their large-signal stability.
This analysis helps understand system dynamics during disruptions and assesses the MG’s ability to
successfully rejoin the main grid. Analytical analysis of large-signal stability approaches for
inverter-based AC microgrids (MGs) has been conducted. This includes energy function analysis and
Lyapunov-based methods for assessing large-signal stability.

Protection

[60]

To ensure reliable and secure operation of MGs, sophisticated protection mechanisms must be designed
and selected. The integration of various technologies within MGs increases the likelihood of errors and
complicates protection actions. Different protection techniques have been studied to ensure that
microgrids (MGs) operate correctly across various topologies and connections. These techniques
address the unique challenges posed by different configurations and integration scenarios.

[61]

Microgrids (MGs) operate in two modes: grid-connected and islanded. While MGs offer significant
benefits to the energy system, their integration into distribution grids has introduced challenges for the
protection system. Various protection concerns in microgrids (MGs), such as fault currents under
different operating conditions and bi-directional fault currents, have been investigated. Potential
solutions for addressing these faults have also been explored.

Optimization

[62]

To enhance microgrid (MG) operation, it’s important to address the intermittent nature of renewable
energy sources (RESs) and issues related to low power quality. Heuristic optimization mechanisms have
been employed to tackle these challenges. An overview of meta-heuristic optimization algorithms and
their role in improving the operational performance of MGs is provided. Various issues related to
microgrids (MGs), including techno-economic analysis, control, load forecasting, fault detection,
flexibility improvement, and energy management, have been investigated. The research indicates that
the Gray Wolf Optimization method, Genetic Algorithm, and Particle Swarm Optimization were
respectively employed for optimizing MG performance.

[63]

Meta-heuristic optimization techniques have been employed for MG optimization. Selecting the most
effective optimization technique is crucial for minimizing MG costs. Investigations have been conducted
on six meta-heuristic techniques, including Differential Assessment and Whale Optimization. A
comparative study using performance indicators has been provided to evaluate their effectiveness.
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2 Functional modes of microgrid

Typically, a MG consists of a local power generation
infrastructure, an energy storage system (EES), vari-
ous loads, and a grid connection point. MGs facilitate
local energy trading between consumers and contribute
to the growth of a decentralized energy market [64,65].
MGs typically include DG units, RESs and EESs as
some key components. The complexity and behavior
of MGs are influenced by the number of distributed
loads and energy sources they incorporate. MGs offer
a stable power supply, support the main grid during
peak demand periods, and help prevent blackouts and
grid instability by balancing supply and demand.

Figure 1 illustrates the categorization of microgrids
(MGs) based on various parameters, including control
strategy, distribution system, and MG components.
According to their electrical characteristics, MGs are
classified into three categories: direct current (DC)
MGs, alternating current (AC) MGs, and hybrid MGs.

A general structure of an alternating current MG
is shown in Figure 2. Typically, MGs operate in two
modes: grid-connected mode and islanded (or indepen-
dent) mode [66,67]. There are differences between these
two modes both in terms of advantages and challenges.
In grid-connected mode, the primary role of the con-

troller is energy management. In contrast, during is-
landed operation, the controller is tasked with addi-
tional responsibilities, including voltage and frequency
management, as well as energy management and load
power sharing [68, 69]. When connected to the main
grid, the microgrid imports power from and exports
power to the central grid. In other words, when the
microgrid is connected to the central power system, it
shares power with the grid. It is allowed to supply reac-
tive power and participate in energy demand planning
with the main grid.

However, when operating in island mode, the mi-
crogrid is not electrically connected to the main grid,
and therefore, the main grid has no impact on its per-
formance. In this case, the DG units connected via the
voltage source converter are responsible for controlling
both voltage and frequency. To prevent overload in
an islanded MG, the DG units must share the power
among themselves, ensuring that both frequency and
voltage remain within permissible limits. When operat-
ing in island mode, MGs face significant challenges such
as power sharing issues and circulating currents. Vari-
ations in line impedance among inverters connected to
the electrical network affect the accuracy of power shar-
ing [70, 71]. In such scenarios, the conventional droop
control technique is insufficient for effectively distribut-
ing the system’s reactive power [72].

Fig. 1. Classification of microgrids.
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Fig. 2. Typical structure of an alternating current
microgrid.

3 Droop control method

Coordination among different distributed generation
(DG) units is essential to meet load demand. Vari-
ous control strategies have been proposed for managing
load supply through parallel power inverters in DG net-
works [73, 74]. Power control methods in inverters in-
clude V/f control, PQ control, and loss control [75]. For
AC MGs, droop control is typically based on voltage,
active power-frequency and reactive power characteris-
tics. In contrast, for direct current MGs, droop regula-
tion generally relies on voltage-current characteristic or
active voltage-power relationships [76]. Control tech-
niques using droop, reactive power-voltage (Q-V) and
active power-frequency (P-f) are effectively employed
in MGs to manage the contribution of reactive and ac-
tive powers [77]. The simplicity and lack of need for
communication between active generators have made
these methods widely used in MGs [78]. Figure 3 il-
lustrates the relationships between active power and
frequency, as well as between reactive power and volt-
age. The droop characteristics can be represented as
follows:

ω = ωn −KωP , (1)

V = Vn −KV Q , (2)

where ω denotes the angular frequency, with its nom-
inal value being ωn. V represents the voltage magni-
tude, with its nominal level being Vn. The slopes for

reactive power and active power are KV and Kω, re-
spectively.

To ensure optimal power distribution between in-
verters during island mode operation and precise man-
agement of the power injected into the grid during grid-
connected mode, droop control plays a crucial role in
regulating the output power [79]. Despite its oper-
ational simplicity and decentralized structure, droop
control often results in inadequate reactive power shar-
ing due to mismatches between local load displace-
ments and feeder impedances. Additionally, droop con-
trol tends to perform poorly with low power quality
when handling nonlinear loads [80, 81]. Also, droop
control has poor performance with low power quality
when dealing with nonlinear loads [80, 81]. The droop
relationship between voltage and reactive power in the
conventional droop regulation techniques is nonlinear
due to the filter reactance. In short, the disadvantages
of the conventional droop control techniques include:

• Effect of system parameters,
• Applicability limited to highly inductive trans-

mission lines,
• Inability to handle non-linear loads,
• Failure to ensure proper voltage regulation,
• Inherent trade-off between accurate power distri-

bution and voltage control,
• Dynamic dependency of power distribution on

loss control coefficients and the energy calcula-
tion method,

(a) Active-frequency power

(b) Reactive power-voltage

Fig. 3. Droop characteristics
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Controller speed adjustment for both active power
controller and reactive power controller can affect fre-
quency and voltage controls [82, 83]. To meet the
growing power demand, coordination between various
DG facilities is necessary [84, 85]. Numerous advance-
ments in droop control methods have emerged, offering
various approaches to enhance traditional droop tech-
niques [86, 87]. Among these improved droop meth-
ods are VI method [88], adaptive droop control [89,90],
angle droop control [91, 92], virtual frame transforma-
tion [93,94] and virtual inertia-based droop control [95].

To decouple reactive and active powers, a tech-
nique that involves converting the frequency and volt-
age frame into a virtual frame is presented in [96]. This
method necessitates real-time management of the out-
put impedance of each distributed generator within the
MG, along with other grid characteristics. However,
the implementation of this type of regulator is feasible

only for small networks with constant load and net-
work components, making it impractical for large-scale
MGs.

The power generation in MGs primarily comes from
renewable sources, which are inherently variable. Tra-
ditional controllers often struggle with the wide range
of operational scenarios due to the regular fluctuations
and uncertainties in power systems. In [97], frequency
management in AC MGs was examined using particle
swarm optimization (PSO) and fuzzy logic techniques.

As illustrated in Figure 4, the dynamic response of
the MG system is demonstrated using a load distur-
bance pattern, or multi-stage load. Figure 5 shows the
frequency deviation for three different controllers. It is
evident that the fuzzy PI controller designed using the
PSO technique outperforms the standalone method in
terms of settling time and control effort for minimizing
frequency deviation.

Fig. 4. Load disorder pattern.

Fig. 5. Comparison of microgrid frequency deviation response for three different control algorithms.

4 Virtual impedance method

Resistance and inductance together constitute the VI.
By introducing an extra impedance between the power
inverter and the load in the physical circuit, VI en-
ables modifications to the control of the power inverter.
This approach allows the controller to adjust the effec-

tive impedance between the inverter and the load. VI
functions similarly to a conventional impedance while
simultaneously minimizing losses [98,99]. This method
addresses impedance mismatches to prevent circulating
currents and unbalanced power sharing. VI is utilized
to analyze microgrid (MG) impedance by incorporat-
ing a feedback control loop into both the voltage and
current control loops within the MG [100,101].

The VI is configured to adjust the output
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impedance of the converter based on the resistance-
to-reactance ratio. With the VI applied in the control
loop, the characteristics of distributed generation (DG)
units are no longer solely determined by loss equations.
Each DG unit’s regulation method includes an output
current feedback loop, as illustrated in Figure 6, which
incorporates the VI [102].

Internal control manages the current and voltage
levels at the inverters’ output. In island mode oper-
ation for the microgrid (MG), the inverters are solely
responsible for controlling the voltage level. In other
words, voltage control is the primary objective of the
internal control loops. The objective of controlling
both the current and voltage loops is to adjust the out-
put voltage of the power inverter to align closely with
the desired voltage of the microgrid (MG) [103].

In the VI technique, determining the appropriate VI
value is a key challenge. A higher impedance value en-
hances power separation but can lead to increased volt-

age droop, potentially causing network instability. To
address this, either a fixed or adaptive VI can be used.
Given that grid conditions, such as loads and renewable
generation levels, are constantly changing, an adaptive
VI approach is generally more effective [104,105]. Fig-
ure 7 illustrates the block diagram of adaptive VI con-
trol. The amount of reactive power demand of each
inverter is calculated from the following equation [106]:

Qdemand =
Qtotal∑n

k=1 Qrated,k
Qrated , (3)

where Q1, Q2, . . . , Qn controller determines the reac-
tive power contribution of each inverter based on the
total rated reactive power. To adjust the Virtual
Impedance (VI) of the distributed sources, the con-
troller calculates the difference between the measured
reactive power demand and the actual reactive power
output.

Fig. 6. Control diagram in direct current microgrids using virtual impedance.

Fig. 7. Block diagram of adaptive virtual impedance control.
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Various techniques for adaptive VI control have
been proposed, including [107,108]: Decentralized con-
trol [109], Low-bandwidth communications [110], Dis-
tributed secondary control [111], virtual synchronous
generator control [112], and voltage source converter
output impedance adjustment [113] can be mentioned.

A distributed current control technique for parallel
power inverters is presented in [114]. In this method,
the virtual resistance is adjusted based on the fault size
and the reactance corresponding to the phase angle of
the fault. This adjustment ensures a consistent output
current from the inverter. The technique then mod-
ifies the equivalent impedance of the inverter across
positive sequence frequencies, negative sequence fre-
quencies, and harmonic frequencies. Line impedance is
a significant issue affecting power mis-sharing among
distributed generation (DG) units. The droop control
strategy, commonly used in microgrids (MGs) to man-
age parallel inverters, often encounters challenges with
uneven reactive power sharing due to line impedance
mismatches. To address these issues, a loss control
strategy based on adaptive voltage and current (VI) is
proposed in [115]. This strategy does not rely on com-
munication and aims to resolve reactive power sharing
problems caused by line impedance differences. The
input signals for the impedance matching controller in-
clude the output reactive power and the voltage of each
distributed generator. Utilizing droop control for de-
centralized power sharing in medium-sized generators
(MGs) has proven effective However, the primarily re-
sistive nature of low-voltage networks and the varying
line impedances among converters present challenges
for equitable reactive power sharing.

The significance of the transient VI component is
discussed in [116]. A small-signal state-space model
is presented to illustrate the impact of including the
transient VI. Simulation results and eigenvalue analy-
sis indicate an improvement in damping with the addi-
tion of the transient VI. In [117], distributed secondary
control techniques are discussed to minimize reactive
power errors in the presence of improper feed lines.
The study details the mathematical modeling of adap-
tive VI control for sharing both reactive and active
power among distributed generators (DGs). Hierarchi-
cal control, which includes both primary and secondary
control levels, is also examined. Simulation data sug-
gests that leader-follower consensus control performs
well for small systems, while leaderless consensus con-
trol is a more reliable option for larger distributed gen-
eration systems. The control system for parallel invert-
ers in islanded microgrids (MGs) is explored in [118],
where an adaptive sliding mode controller is employed
to enhance disturbance rejection performance within
the regulation system.

Additionally, adaptive algorithms are utilized to en-
sure the robustness of the inverter control system by
monitoring both external and internal disturbances.
Three types of PID controllers – conventional sliding
mode controller and adaptive sliding mode controller
– are compared for the inverter control system. The
state trajectories in the phase space are illustrated in
Figure 8. Ideally, the control function should cause the
state path to move from the initial point swiftly to-
wards the sliding surface and, after sliding along this
surface, ultimately converge to the origin. Inverter
system performance can be monitored using one of
four techniques: robust control, nonlinear control, ar-
tificial intelligence control algorithms, or disturbance
observer-based control. Reference [119] explores the
susceptibility of voltage source inverters to load vari-
ations and parameter perturbations. An enhanced
nonlinear extended state observer (NLESO) is com-
bined with a rapid terminal sliding mode control tech-
nique. Simulation results indicate that the NLESO im-
proves disturbance rejection capability, maintains the
first derivative peak, ensures high tracking accuracy,
and achieves low total harmonic distortion. The state
paths are illustrated in Figure 9, and the rate of change
is depicted in Figure 10. The VI is an open-loop control
that may potentially overload the DG unit. To address
this, a closed-loop control scheme is proposed in [120]
to manage harmonic and unbalanced power distribu-
tion among DG units. This approach uses the low-
est DG output impedances to optimize power quality,
with absorbed power and residual capacity considered
as feedback signals.

5 Conclusion

Energy production and consumption impact on social,
economic and environmental issues. MGs can oper-
ate either connected to the main grid or independently
from it. In large island networks, impedance mis-
matches can reduce the performance of power sharing.
This article provides a brief overview of the application
of the VI technique in droop control methods for man-
aging power sharing. In island mode, all load power de-
mand must be distributed among multiple distributed
generation (DG) units. Droop control based on the
Voltage-Current (VI) technique is a method used to
enhance the robustness of power sharing among DG
units in a microgrid (MG) operating in island mode.
VI improves performance under nonlinear load condi-
tions, helps dampen fluctuations, and increases system
stability.
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(a) PID controller

(b) normal sliding mode controller

(c) adaptive sliding mode controller

Fig. 8. Status paths of the inverter control system
for three types of controllers in the phase space.

Fig. 9. State paths in the phase plane for sliding
mode control and fast terminal sliding mode con-
trol methods.

Fig. 10. Output voltage error change rate for sliding
mode control and fast terminal sliding mode control
methods.
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