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Abstract

In this paper, a method for determination of refractive index in membrane of fuel cell 
on the basis of three-longitudinal-mode laser heterodyne interferometer is presented. 
The optical path difference between the target and reference paths is fixed and phase 
shift is then calculated in terms of refractive index shift. The measurement accuracy of 
this system is limited by nonlinearity error. In this study, nonlinearity error is modeled 
by multi-layer perceptrons (MLPs) and stacked generalization method (Stacking),
using two learning methods; back propagation (BP) and genetic algorithm. Training 
neural networks with genetic algorithm improves modeling of nonlinearity error in 
this system. In the proposed technique, a real code version of genetic algorithm is 
used. Parameters and genetic operators are set and designed accurately. The results 
indicate that the nonlinearity error can be effectively modeled by training the stacking 
with the genetic algorithm which has minimum mean square error (MSE).

  *Corresponding author Email:  s_olyaee@srttu.edu

1. Introduction

The use of fuel cell is a means of producing energy, such 
as electricity and heat. Fuel cell is an electrochemical 
device for transmitting electrochemical energy to 
useful electrical energy [1]. We use fuel cell in order 
to produce electrical energy in power plants, portable

devices, automobiles, etc. Fuel cell is an important 
technology for producing clean energy with high 
efficiency. It consists of an anode, a cathode, and two 
current collectors separated by a thin membrane [2]. 
Operation of fuel cell systems directly depends on the 
water content in the membrane. High water content 
increases the efficiency of fuel cell; however, if it is

DOI: http://dx.doi.org/10.22104/ijhfc.2014.30



Iranian Journal of Hydrogen & Fuel Cell 2(2014) 95-10496

too high, then some problems occur, including: 
swell, mechanical pressure, and destruction of fuel 
cell membrane [3]. Density and refractive index in 
membrane are commensurate together, thus estimating 
the refractive index helps measuring the water content 
in fuel cell membrane.
There are many developed methods for imaging water 
content with magnetic resonance imaging, neutron 
imaging, and optical fluorescence spectroscopy 
[4, 5]. All of these methods are expensive to run, 
or have weak resolution and are very complicated 
and time-consuming. Therefore, interferometry 
methods are attractive and favored by researchers 
to measure refractive index in recent years. Mach-
Zehnder and two-longitudinal-mode laser heterodyne 
interferometers are used for recognizing variation of 
water content percentage and duration of penetrating 
process in fuel cell [6, 7]. 
We use three-longitudinal-mode laser heterodyne 
interferometer rather than two-mode to obtain higher 
resolution capabilities. Three-longitudinal-mode laser 
heterodyne interferometer has improved with high 
sensitivity, which measures refractive index shift 
versus variation of water content in fuel cell membrane. 
Nonlinearity error in heterodyne interferometer limits 
accuracy of measurement of refractive index. This 
error is due to non-ideal laser polarization, optical 
devices, and electronic measurement system. Thus, 
modeling and analyzing of measurement errors 
are very important. Researchers have worked for 
modeling, calculating, and finally compensation 
of nonlinearity by using complicated calculation 
analysis [8-10]. Nowadays, the neural networks play 
an important role in modeling of nonlinearity error 
in laser interferometer [11, 12]. Olyaee et al. have 
modeled the nonlinearity of two-mode heterodyne 
interferometer by using MLPs and radial basis 
function, and Stacking method [13].
When nonlinearity error is modeled by MLPs and 
Stacking using back propagation (BP) as their learning 
algorithm, it cannot offer a good model. Gradient 
descent based techniques usually tend to stick in local 
minima and it depends on the shape of the error surface 
exactly Therefore, replacing it with genetic algorithm

can be very useful. 
In this paper, nonlinearity error due to ellipticity and 
non-orthogonality of input polarized light of three-
mode heterodyne is modeled. This modeling has 
been done in order to have more accurate system for 
measuring refractive index shift due to variation of 
water content in fuel cell. The nonlinearity error is 
modeled by MLPs, Stacking method, trained MLPs 
with genetic algorithm (we call it MLPs-GA) and 
trained Stacking with genetic algorithm (we call it 
Stacking-GA). Their performances are also compared. 
MLPs-GA and Stacking-GA methods avoid sticking 
in local minima and they search the whole space of 
the problem. Thus, these two methods are expected to 
have better results for measuring refractive index shift 
in fuel cell.
 Outline of this article is as follows: In the next part, 
the refractive index shift due to the variation of 
water content in the fuel cell membrane is discussed 
based on three-longitudinal-mode laser heterodyne 
interferometer. In the third part, the modeling of 
nonlinearity error for measurement of the refractive 
index shift is described by using MLPs and Stacking. 
The basis of genetic algorithm is presented in the 
fourth part. In the fifth part, MLPs-GA and Stacking-
GA methods for modeling of nonlinearity error are 
introduced. Finally, in the last part simulation results 
are drawn.

2. Measurement of the refractive index 

Three-longitudinal-mode heterodyne interferometer 
has higher accuracy compared to two-mode 
interferometer. The structure of three-longitudinal-
mode laser heterodyne interferometer for high 
accuracy measuring of refractive index shift in fuel 
cell is shown in Fig. 1.
The laser beam is emerged by the stabilized He-Ne 
laser with 632.8 nm wavelength. The beam is divided 
into two paths by beam splitter, reference and target 
paths. Then, according to polarizations, the light is 
divided into two paths in x- and y-directions by using 
polarizing beam splitter (PBS). The reflected beams



Fig. 1. The schematic representation of a three-mode laser 

heterodyne interferometer. QWP: quarter-wave plate, CCP: 

corner cube prism, PBS: polarizing beam splitter, APD: 

avalanche photodiode, BS: beam splitter.

are interfered and detected by two avalanche 
photodiodes. The outputs of the two avalanche 
photodiodes are sent to signal conditioner and digital 
signal processing circuit to detect phase shift resulting 
from the changes in refractive index of the fuel cell 
[13]. The electrical fields of three-longitudinal-mode 
laser output are written as:

                                                                                  (1)

                                                                                  (2)

                                                                                  (3)

In this equation v1, v2 and v3 are the optical frequencies 
of three modes and )exp( αϕα i  and )exp( βϕβ i  are 
made by ellipticity polarization and non-orthogonality 
of input polarized light. It can be easily proved that 
the two photocurrents of avalanche photodiodes are 
gained by calculating electric fields square from the 
following equations:

                                                                                  (4)
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                                                                                   (5)

where, k is a constant value and 2 1bLv v v= − , 

3 2bHv v v= −  and b bH bLv v v= − are the intermode beat 
frequencies. Also, 1Ψ  and 2Ψ  are the phase shift 
nonlinearities and rψ  and tψ  are phase shifts in the 
reference and target paths, respectively [7]. The free-
error phase between the target and reference paths 
resulting from the refractive index shift of fuel cell is 
denoted by ψ∆  which can be given as:

                                                                                   (6)

where, nnn rt ∆=−  is the difference in refractive 
index due to the change of water content of the fuel 
cell membrane, λ the wavelength, and z the optical 
path difference (OPD). The phase difference between 
the two measured output signals is derived as follows:

                                                                                  (7)

The first part determines twice-increased resolution 
compared with two-longitudinal-mode heterodyne 
interferometer and the second part ( 211 Ψ−Ψ=Ψn ),
is the nonlinearity error. While there is a linear 
relation between the measured phase difference and 
refractive index, the refractive index shift is obtained 
by measuring the phase shift as:

                                                                                   (8)

For accurate measurement of refractive index, 
nonlinearity phase should be eliminated. In the next 
part, the nonlinearity errors are modeled with MLPs 
and Stacking neural networks using two different 
learning methods: back propagation and genetic 
algorithm. 
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3. Neural networks

3.1. Multi-layer perceptrons (MLPs)

Modeling of the nonlinearity error in three-longitudinal-
mode laser heterodyne interferometer using neural 
network is shown in Fig. 2. We use back propagation 
algorithm for training the MLPs. The MLPs include 
an input layer, a hidden layer, and an output layer, as 
shown in Fig. 3. The MLPs can have more than one 
hidden layer, but it has been theoretically proved that 
only one hidden layer is sufficient for neural networks 
to estimate any complex nonlinear function [14]. The

Fig. 3. The structure of MLPS network for modeling of 

nonlinearity error.

output currents of two avalanche photodiodes (APD1, 
APD2) as input and nonlinearity error heterodyne 
interferometer ( nlΨ ) as desired output are considered 
for MLPs neural network. 
Number of neurons in the hidden layer is obtained 
by trial and error. The structure of the neural network
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includes two neurons in input layer, 12 neurons in 
the hidden layer and one neuron in the output layer. 
The learning process finds the optimum value of 
connection weights and biases of the input-hidden 
layer and hidden-output layer. Output of each neuron 
which belongs to hidden layer is shown in Fig. 4.
The output of each neuron is gained with summation 
over the multiplication of each input and its 
corresponding weight, and finally, the result is passed 
through a nonlinear activation function (transfer 
function). The sigmoid tangent activation function f(x) 
is used to transfer the values of input layer neurons to 

Fig. 4. The relation between input and output of hidden layer 

neuron.

output of hidden layer neurons to the output layer. 
The output neurons of the hidden and last layers are 
calculated by Eqs. (9) and (10) [15]:
 
                                                                                    (9)
 

                                                                                 (10)

Fig. 2. Modeling of the nonlinearity error in the three-longitudinal-mode laser heterodyne interferometer by using neural 

network.
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where xi is a variable input, wji connection weight 
between hidden and input neurons, wkj  connection 
weight between output and hidden neurons, wj0 and 
wk0   are biases for the jth and kth neuron respectively, i a 
number of neurons for input, j a number of neurons for 
the hidden layer, and k the number of output neurons. 
Output of neural network, ˆ

nlΨ , is compared with the 
desired output, ˆ

nlΨ , in the training phase, and the error 
in the form of mean square error (MSE)  is calculated 
for all data. The MSE function is derived from the 
following equation:

                                                                                   (11)

where n is the number of data in the training phase. 
The purpose is to reduce the amount of errors. The 
adjustment applied to the synaptic weight is calculated 
as follows:

                                                                                  (12)

where, η is the learning rate, and is selected carefully. 
Through the training phase, the neural network learns 
and generalizes nonlinear relationship and maps the 
input to the output.

3.2. Stacked Generalization method 

Stacked Generalization method or Stacking has been 
proposed by Wolpert in 1992 [16]. It is a combined 
method for training input data, such that the system 
gets more generalizability. General framework of this 
method includes two levels as shown in Fig. 5. 
The first level (called level-0) is a set of k divers’ 
neural network and each of them are called a base 
classifier. Each classifier is trained with original 
data. Then, the output of the zero level is used as the 
input of the next level (called level-1). As shown in 
Fig. 5, 0

1N  to 0
kN  stand for k networks sorted as first 

layer and their output is combined by the 1
1N  network 

at level-1. During the training process, the combiner 
learns optimum weights for the combination of base 
classifiers outputs. Using such a combination method,

Fig. 5. Stacking method for modeling of nonlinearity error in 

the refractive index determination system of fuel cell.

we will reach the results much better than when 
using each single classifiers. Four MLPs networks 
with a hidden layer are used at level-0 and one MLP 
is used at level-1 for nonlinearity modeling of three-
mode heterodyne interferometer in measurement of 
refractive index shift in fuel cell.
 

4. Genetic algorithms

Genetic algorithm (GA) is a member of large family 
of evolutionary algorithms that has grown rapidly in 
the field of artificial intelligence. For the first time, 
GA was introduced by John Holland in early 1970 
[17]. This algorithm is a powerful optimization tool, 
inspired of natural genetic and Darwin's evolutionary 
theory. This algorithm operates under the genetic laws 
and natural selection. It is an effective search method 
for problems with complex space [18]. In order to 
use the genetic algorithms following steps should be 
considered:
1- Chromosome representation and initialization, 2- 
Calculate fitness function (evaluating chromosome), 
3- Using evolutionary operators such as selection, 
crossover, and mutation, 4- Replacement (select next 
generation) and termination criteria. GA is improving 
the fitness of population using aforementioned 
operators. The GA Learning process is shown in Fig. 
6.
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5. Training of MLPs and Stacking with genetic 
algorithms

When the nonlinearity error is modeled with MLPs 
and Stacking, in order to measure the refractive 
index shift in fuel cell with three mode heterodyne 
interferometer, weights of the network usually is learnt 
by the back propagation algorithm (BP) based on the 
gradient descent algorithm. Despite the popularity of 
these techniques for training neural network, it has

Fig. 6: The learning process flowchart using the GA.

some drawbacks. It depends on the shape of the error 
surface exactly. Gradient descent based techniques, 
usually tends to stick in local minima [19]. Thus, the 
nonlinearity error cannot be modeled well. In this 
paper, we use genetic algorithm instead of gradient 
descent algorithm in MLPs and Stacking. Our results 
depict that the refractive index of the fuel cell will be 
determined more accurately. 
Genetic algorithm can be used in two different ways 
for training neural networks: 1- Weights optimization 
and 2- Structure and topology optimization [20]. We 
use the first approach in our neural network learning 
process. The proposed methods are explained in the 
following parts.

5.1. Chromosome representation and initialization

In problems with large number of variables, we can 
avoid the complexity by using the real number for 
chromosomes presentation instead of the binary 
form. In addition, in such problems, convergence of 
genetic algorithm by using the binary structure is very 
controversial. In this paper, we use the real number 
form for chromosome representation and its genetic 
operators to train the MLPs and Stacking. The initial 
population is selected randomly.

5.1.1. Chromosome representation in the MLPs 
training phase

In this part, we consider the MLPs that have been 
described in section 3.1. Connection weights and 
biases are trained by using genetic algorithms. Our 
MLPs network has two neurons in the input layer, 12 
neurons in the hidden layer and one neuron in output 
layer. Thus, the total number of weights and biases are 
49. All these connection weights and biases between 
layers of network are represented as genes of each 
chromosome. Thus, each chromosome with 49 genes 
is represented as one set of weight.

5.1.2. Chromosome representation in the Stacking 
training phase

The Stacking method is presented in 3.2. It contains 
of one MLPs network at level-1 and all its weights 
are trained with the BP algorithm. In the proposed 
method this algorithm is replaced by GA to overcome 
problems of gradient descent algorithm in MLPs 
network. The outputs of 4 networks in level-0 are used 
as inputs of the second level MLPs (level-1), and then 
the final output is the nonlinearity of interferometer in 
measurement of refractive index shift in fuel cell. The 
MLPs of level-1 has four neurons in the input layer, 
12 neurons in the hidden layer and one neuron in the 
output layer. This structure includes 73 weights and 
biases, which present 73 genes in each chromosome. 
It should be noted that each chromosome just includes 
connection weights and biases and it does not include 
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any topology and other structural information.

5.2. Calculation of fitness function

Evaluation of each set of connection weights (each 
chromosome) is carried out by making corresponding 
neural network structure. Mean square error between 
the actual output and target is chosen as fitness function 
that is given as:

                                                                                  (13)

5.3. Evolutionary operators

5.3.1. Selection

In GA, selection of individuals for produce successive 
generations has a vital role. In this paper, we use 
stochastic universal sampling (SUS) method. SUS 
is a sampling method which implements selection 
proportional to the fitness. It is proposed to overcome 
some of the problems of roulette wheel sampling 
method. In roulette wheel selection method, the wheel 
turns N times; N is population size. In each time, each 
chromosome that its sector was faced against marker 
is selected for generation. In SUS method, the wheel 
runs only once and hence it is used to choose N parent 
from N marker placed in the same distance from 
each other. After the wheel stops, each chromosome 
is selected on the basis of the number of the marker 
placed against it, then it transmit to the marriage pool 
for participating to produce generations.

5.3.2. Crossover

Among different crossover operators [21], the heuristic 
type is used in this work. In this operator using the 
fitness values of the two parent chromosomes, the 
direction of the search is determined. If X and Y are 
parent chromosomes and X ′ , Y ′ are offsprings, then 
the offsprings are made according to the following 
equations:

                                                                                 (14)

                                                                                (15)

where, r is a random number between zero and one. If 
the chosen r causes one or more genes of chromosome 
to be outside of the allowable upper or lower bounds, 
then is not allowed. In this state, a new random number 
r is generated and a new offspring is created by Eq. 
(14).

5.3.3. Mutation

There are different types of mutation functions 
which are used in the GA [21]. The uniform mutation 
function is applied in this work. First, according to the 
mutation probability, the number of variables in the 
population are selected randomly, then each variable 
changes according to type of mutation and is replaced 
in the population. General structure of this operator 
for number with floating point is defined by:

                                           for                                          (16)

In this mutation, a variable that should be mutated is 
replaced with a random value in defined range, where 
r is a random number in the interval between zero and 
one, with a uniform distribution.

                                                                                (17)

5.4. Replacement (select next generation) and 
termination criteria

At the end of each iteration of genetic algorithm, 
there are two generations of parents and offspring. 
Among the two generations that includes 2N 
member, N number of members should be elected 
to continue the algorithm. Elitist selection method 
is also used in this work. Thus, most qualified 
chromosomes will be allowed to be transferred 
directly to the next generation. Next, the 
process of evaluation and reproduction for each 
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chromosome is repeated until the stopping criteria 
are met. Termination criterion of our algorithm is the 
maximum number of generations.

6. Simulation results

In this section, we investigate the performance of 
discussed algorithms for nonlinearity modeling of 
three-mode heterodyne interferometer in measurement 
of refractive index shift. The input data for the 
neural network are two output currents of avalanche 
photodiodes. In the training phase, the training input 
vector P=[IAPD1, IAPD2] is gained by putting the fixed 
parameters and nonlinear parameters in Eqs. (4) 
and (5). The target vector is generated by Eq. (8) 

[ ]1nT = Ψ . The structure of MLPs is (2:12:1) and the 
training is done in 1000 epochs with the learning rate 
of 0.01. The Stacking structure is four MLPs network 
with (4:12:1) structure.
In MLPs and Stacking methods, MSE value is not 
decreased favorably; however, the network trains in 
a lot of epochs. Genetic algorithm is set for training 
the MLPs and Stacking with heuristic crossover 0.8, 
uniform mutation probability 0.01, 150 chromosomes 
(population size) in MLPs and 190 chromosomes in 
Staking. The algorithm is repeated for 100 generations. 
The nonlinearity error is simulated by using 
mathematical rules as reference. The nonlinearity in 
the testing phase is modeled by MLPs and MLPs-GA 
as shown in Fig. 7. The main parameters are
considered as 0.02, 0.002, 0.5radα βα β φ φ= = = = .
Figure 8 shows the nonlinearity error modeled by 
Stacking and Stacking-GA, considering the same 
parameters. According to Eq. (8), the value of 
nonlinearity error should be decreased in order to get 
a better modeling, and finally a better measurement of 
refractive index in membrane of fuel cell. The MSE 
values for various parameters of the nonlinearity 
error in testing phase, using each of aforementioned 
method are listed in Table 1. Results show that the 
performance of the MLPs-GA and Stacking-GA 
method for nonlinearity modeling are much better 
than each of MLPs and Stacking. According to the

Fig. 7. The nonlinearity error modeling in refractive index 

determination by (a) MLPs and (b) MLPs-GA; expected 

nonlinearity (up), the modeled nonlinearity (middle), and the 

difference between expected and modeled nonlinearity (down).

results, the MSE value for different error parameters 
is between -46.34dB and -35.61dB for MLPs 
and between -65.42dB and -52.25dB for stacking 
method. When we use GA approach, these values are 
respectively improved to -89.07dB and -70.68dB for 
MLPs-GA and -121.12dB to -98.58dB for Stacking-
GA. By comparing the results and the reported results 
in [7] which have been extracted from nonlinearity 
modeling by least mean square (LMS), normalized 
least mean square (NLMS), affine projection algorithm 
(APA), and recursive least squares (RLS) methods, 
it is concluded that by applying the GA, the MSE is



considerably minimized.

Fig. 8. The nonlinearity error modeling in refractive index 

determination by (a) Stacking and (b) Stacking-GA; expected 

nonlinearity (up), the modeled nonlinearity (middle), and the 

difference between expected and modeled nonlinearity (down).

Iranian Journal of Hydrogen & Fuel Cell 2(2014) 95-104 103

7. Conclusion

In this paper, MLPs and Stacking, MLPs-GA and 
Stacking-GA have been applied for modeling the 
nonlinearity error resulting from ellipticity polarization 
and non-orthogonality of input beam in three-
longitudinal-mode laser heterodyne interferometer for 
refractive index determination of fuel cell membrane. 
Our methodology adopts a real coded GA strategy 
and the genetic operators can find optimized weights 
and biases of the neural networks much better than 
gradient descent method while they prevent from 
some problems like premature convergence and 
falling in local minima. Our main results depicts that 
genetic algorithm, which is able to search globally, 
improves the performances of both the MLPs and 
the Stacking methods in modeling of measurement 
error in refractive index determination of fuel cell. 
It has been also shown that the Stacking-GA method 
modeled nonlinearity better than other approaches. In 
a special case, the minimum MSE has been obtained 
to be equal to -121dB.
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