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Abstract

Distribution of contact pressure between the bipolar plate and gas diffusion layer 
considerably affect the performance of proton exchange membrane fuel cell. In this regard, 
an adaptive neuro-fuzzy inference system (ANFIS) is developed to predict the contact 
pressure distribution on the gas diffusion layer due to dimensional errors of the bipolar 
plate ribs in a proton exchange membrane fuel cell. Firstly, the main data set of input/
output vectors for training and testing of the ANFIS is prepared based on a  nite element 
simulation of the contact between the bipolar plate and gas diffusion layer. An experimental 
procedure is used to validate the simulation results. Then, the ANFIS is developed and 
validated using the randomly selected data series for network testing. The applied ANFIS 
model has ten inputs made up of the dimensional errors of the bipolar plate ribs (e1 … e10). 
The standard deviation of contact pressure distribution (Pstd) on the gas diffusion layer is 
the unique output of the ANFIS model. To select the best ANFIS model, the average errors 
of various architectures two different data series of training and testing of the main data set 
are calculated. Results indicated that the developed ANFIS has an acceptable performance 
in predicting the contact pressure distribution for the cited fuel cell model. The proposed 
integrated prediction model is feasible and effective for the dimensional tolerances 
considered. This method can reduce computing time and cost considering the acceptable 
accuracy of the obtained results, and can be used to analyze the effects of dimensional 
errors of bipolar plate on the performance of proton exchange membrane fuel cell.
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1. Introduction

The use of renewable energy sources in order to reduce 
the consumption of fossil fuels is very important. 

Hydrogen is the most abundant element in nature and 
an appropriate alternative to fossil fuels for lowering 
emissions. Proton exchange membrane (PEM) fuel 
cells have received wide attentions as highly ef cient 
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clean power sources that use hydrogen and oxygen 
to generate electricity, heat, and water [1]. PEM 
fuel cells have advantages such as low-temperature 
operation, high power density and quick startup that 
make them  suitable for automotive and portable 
applications [2,3].
The bipolar plate (BPP) and membrane electrolyte 
assembly (MEA) are the main components of a 
typical PEM fuel cell and play signi cant roles in 
the system [4]. A typical MEA is composed of a gas 
diffusion layer (GDL), catalyst layer and polymer 
electrolyte membrane. Contact pressure distribution 
between the BPP and GDL is an important factor 
that affects the performance of a PEM fuel cell [5,6]. 
On one hand, interfacial contact resistance can be 
reduced inside the cell with a high BPP/GDL contact 
pressure [5, 7]. On the other hand, over compression 
of GDL may occur with large contact pressure which 
results in an increase of  ow resistance [6, 8-10]. 
Furthermore, large contact pressure may seriously 
deform the MEA causing cell leakage and an internal 
short [11, 12]. Therefore, investigating the contact 
pressure distribution between BPP and GDL is 
necessary.
Moreover, dimensional errors of BPP are inevitable 
and lead to inappropriate GDL pressure distribution, 
resulting in a decrease of fuel cell performance [13, 
14]. Controlling the dimensional errors of BPP to 
very low levels is costly. Hence, b it is necessary to 
investigate the effects of dimensional errors on the 
performance of PEM fuel cell and obtain suitable 
tolerance values to avoid unnecessary costs and 
maintain proper GDL pressure distribution.
To the best of the authors’ knowledge, the dimensional 

errors of components of the PEM fuel cell have not 
yet received enough consideration. In this regard, 
the main objective of this study is to present a 
methodology based on  nite element simulation 
(FES) and adaptive neuro-fuzzy inference system 
(ANFIS) to predict GDL pressure distribution due to 
the dimensional errors of BPP in a PEM fuel cell. 
First, the main data set of input/output vectors for 
training and testing of the ANFIS is prepared based 
on the  nite element simulation of contact between 
BPP and GDL. An experimental procedure is used 
to validate the simulation results. Then, the ANFIS 
is developed and validated using the randomly 
selected data series for network testing. Finally, an 
integrated prediction model is developed to predict 
GDL pressure distribution in the whole range of 
dimensional tolerances.

2. Finite element analysis

Using the commercial code of ABAQUS, a parametric 
 nite element model of BPP/GDL contact is developed 
as shown in Fig. 1. The sample graphite BPP model 
for the present study is illustrated in Fig. 1.a. The 
parametric model of BPP/GDL contact consists of a 
2-D section of the sample BPP and GDL (Fig. 1.b).
The parameters of the BPP/GDL  nite element model 
are described in Table 1. The present model includes 
a bipolar plate and gas diffusion layer with an active 
area of 40×40 mm2. Also, non-uniform BPP/GDL 
contact due to  dimensional errors (e1 … e10) can be 
seen in Fig. 1.b. The real heights of the BPP ribs can 
be calculated by Equation 1 as follows:

                           (a)                                                                                                         (b)
Fig. 1. a) Sample graphite BPP model for the present study; b) Parametric model of BPP/GDL contact with exaggerated dimensional errors.
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                                                                          (1)

where Hr
r, Hr

n and er represent the real height, 
nominal height and dimensional error for ribr of 
BPP, respectively. The properties of materials used 
for nite element simulation are listed in Table 2.

Table 1. Parameters of the BPP/GDL nite element model.
Parameter Value Unit Description
W0 1 mm width of BPP edges
Wr 2 mm width of BPP ribs
Wc 2 mm width of BPP channels
H0 3 mm overall height of BPP
Hr

n 1 mm nominal height of BPP ribs
Hr

r 1+er mm real height of BPP ribs
Hg 0.25 mm GDL thickness
Pc 0.5 MPa clamping pressure

Meshing is very important to obtain an exact answer. 
In order for the contract model to achieve realistic 
physical behavior appropriate types of elements 
should be selected for each part and their contact 
surfaces. Finally, clamping load, boundary conditions 
and the contact properties of the components 
interfaces are properly dened and the nite element 
numerical model is solved. The number and type of 
the model meshing is shown in Table 3. The contact 
between BPP and GDL is selected as “surface 
to surface” of type “Finite sliding”. The normal 
behavior of contact is chosen as “hard contact” and 
the tangential behavior is set to “isotropic frictional”.
Meshing is very important to obtain an exact answer. 
In order for the contract model to achieve realistic 

physical behavior appropriate types of elements 
should be selected for each part and their contact 
surfaces. Finally, clamping load, boundary conditions 
and the contact properties of the components 
interfaces are properly dened and the nite element 
numerical model is solved. The number and type of 
the model meshing is shown in Table 3. The contact 
between BPP and GDL is selected as “surface 
to surface” of type “Finite sliding”. The normal 
behavior of contact is chosen as “hard contact” and 
the tangential behavior is set to “isotropic frictional”.
Clamping pressure is also applied on the upper 
surface of BPP and displacement of the side surfaces 
of BPP is set to “Zero” in the X direction (U1). The 
displacement of the lower surface of GDL is set to 
“Zero” in the Y direction (U2), as well.
Various values of dimensional tolerances (from
± 0.01 mm to ± 0.1 mm at an interval of 0.01 mm) are 
applied on the parametric model and the BPP/GDL 
contact pressure values are calculated for the applied 
errors. Fig. 2 shows stress distribution in the BPP 
and GDL for an ideal model without dimensional 
errors (Fig. 2.a) compared to the model with ± 0.03 
mm dimensional tolerance (Fig. 2.b). However, the 
amount of contact pressure (CPRESS) has been 
used to evaluate the performance of the fuel cell. 
For example, the distribution of contact pressure 
at the interface of the BPP/GDL for the ± 0.03 mm 
dimensional tolerance in comparison with the ideal 
model is presented in Fig. 3. As shown in Fig. 3, 
the dimensional error of BPP makes the BPP/GDL 
contact behavior non-uniform.

 r n
r r rH H e

Table 2. Properties of materials used for nite element simulation.
Part Material Elastic modulus (MPa) Poisson's ratio Density (g.cm-3)
BPP graphite 13×103 0.1 1.83
GDL Toray TGP-H-060 6.1 0.1 0.44

Table 3. The number and type of the model meshing.
Part Number of nodes Number of elements Element type Description
GDL 4806 4000 CPS4R linear quadrilateral
BPP 2761 2500 CPS4R linear quadrilateral

End Plate 1414 1300 CPS4R linear quadrilateral
Total Model 8981 7800 CPS4R linear quadrilateral
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(a)
 

(b)
Fig. 2. Stress contour plot of the BPP and GDL a) Ideal model without dimensional error; b) Model with± 0.03 mm dimensional 

tolerance.

 
(a)

 
(b)

Fig. 3. Contact pressure distribution at the BPP/GDL interface a) Ideal model without dimensional error; b) Model with ±0.03 
mm dimensional tolerance.

In this study, the mean Pave and standard deviation 
Pstd of the GDL contact pressure distribution are 
used to evaluate the PEM fuel cell performance. 
These values can be obtained with the parametric 
nite element model as follows:

(2)

(3)

where Pi is the contact pressure of each contact 
element on the GDL and n is the number of all the 
contact elements on the GDL. If Pi exceeds yield 
strength (2.5 MPa), there will be residual stress 
in the GDL after unloading which inuences the 
durability of the PEM. Pave represents the average 
contact pressure and Pstd represents the uniformity 
of the GDL contact pressure. When Pave increases, it 
means that the contact behavior on the GDL becomes 
better. If Pstd increases, it means that the uniformity 
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of pressure distribution becomes worse. Increasing 
the dimensional error has a signicant effect on 
uniformity of the GDL pressure distribution (Pstd), 
but has little effect on the mean contact pressure 
(Pave). Also, stress concentration for some of the BPP 
ribs with dimensional error is the main reason that 
probability of GDL stress failure increases as the 
clamping force increases (Fig. 3-b).

3. Experimental study

The results of nite element simulations are 
validated through an experimental procedure. The 
experimental procedure has three main steps include 
manufacturing of BPP sample, evaluating BPP 
dimensional error using a laser scanning system, 
and experimentally examining the BPP/GDL contact 
pressure distribution under clamping pressure.
Initially, a sample BPP is fabricated with graphite 
sheet by a machining process (Fig. 4.a). The BPP 
sample has thickness of 3 mm with 10 parallel-
channel ow elds. Then, the sample BPP is scanned 
by a laser measurement system. The obtained 3D 
CAD model of the sample is used to generate several 
2D sections of BPP with real dimensions for the 
validation process. Also, TGP-H-060 carbon paper 
with a thickness of 0.25 mm and an active area 
of 40×40 mm2 (Fig. 4.a) is used for the pressure 
distribution test.
Fig. 4.b schematically illustrates the facilities used 

for the GDL pressure test. In order to analyze the 
GDL pressure distribution, pressure sensitive lm 
(PSF) from the FUJIFILM Company with a range of 
0.5-2.5 MPa is inserted between the BPP and GDL. 
By increasing the contact pressure, the color of PSF  
slowly changes from white to red. Effect of PSF 
thickness on GDL contact pressure can be neglected 
according to the literatures [9, 15, 16].
Approximating the actual assemblyof a PEM 
fuel cell, the experiments are done under 0.5 MPa 
clamping pressure [13, 17]. In order to avoid 
deformation of the endplates, a press machine is used 
to set the compressive force. The clamping force is 
simultaneously applied at the speed of 1 mm/min. 
After 2 minutes, the assembly unit is unxed and the 
pattern of GDL pressure distribution is formed on 
PSF. To check the repeatability, three replications are 
conducted for each case.
A sample result of the GDL pressure distribution 
test is shown in Fig. 5. The color prole of the PSF 
principally mirrored the pattern of BPP ribs. Based 
on the PSF calibration chart proposed by FUJIFILM 
Company, a MATLAB code is developed to transfer 
the color map into the contact pressure values. As 
shown in Fig. 5.a, different sections of PSF sample are 
considered to compare the results of the experimental 
test and nite element simulation. 2D proles of the 
BPP sample in selected sections (Fig. 5.a) obtained 
from laser scanning are modeled in contact with 
GDL using the nite element solution described 
previously. Also, real contact pressure values are 

                                                                       (a)                                                              (b)
Fig. 4. a) Schematic diagram of the clamping pressure test; b) Bipolar plate and gas diffusion layer used for experimental validation.
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calculated in each section of the PSF sample using 
MATLAB code. Fig. 5.b shows the result obtained 
from the Calibration code in Section 3 of the PSF 
sample. Finally, the results of nite element analysis 
can be compared with the experimental values as 
shown in Table 4. The results represents acceptable 
agreement of the solutions. 
Although, it must be noticed that validation of 
the results is difcult due to  other types of errors 
existing in the components. These errors would need 
more complicated models to simulate   the BPP/GDL 
contact in a single cell and are not the focus of the 
present study.

4. Prediction model based on ANFIS

4.1. Adaptive neuro fuzzy inference system (ANFIS)

An ANFIS gives the mapping relationship between 
the input and output data using the hybrid learning 

                                                (a)                                                                                                       (b)
Fig. 5. a) Pressure sensitive lm from the experimental test and positions of calculated sections; b) Sample result obtained from 

PSF Calibration code in Section 3.

Table 4. BPP/GDL contact pressure values from nite element analysis and the experimental test

Section Number
average of contact pressure (MPa) standard deviation of contact pressure (MPa)

nite element simulation experimental test nite element simulation experimental test
1 0.9289 0.4653 0.3230 0.3234
2 0.9673 0.7410 0.3267 0.4146
3 0.9602 1.0051 0.3274 0.4806
4 0.9673 0.9628 0.3266 0.4655
5 0.9603 0.8368 0.3276 0.4362
6 0.9145 0.8746 0.3210 0.4447

method to determine the optimal distribution of 
membership functions [18]. Both articial neural 
network and fuzzy logic are used in ANFIS 
architecture.
Basically, ve layers are used to construct this 
inference system. Each ANFIS layer consists of 
several nodes described by the node function. The 
inputs of the present layers are obtained from the 
nodes in the previous layers. Fig. 6 shows the ANFIS 
structure for a system with m inputs (X1…Xm), each 
with n membership functions (MFs), a fuzzy rule 
base of R rules and one output (Y). The network, 
consisting of ve layers, is used for training the 
Sugeno-type fuzzy interface system (FIS) through 
learning and adaptation. The number of nodes (N) in 
layer 1 is the product of numbers of inputs (m) and 
MFs (n) for each input, i.e., N=mn. The number of 
nodes in layers 2-4 depends on the number of rules 
(R) in the fuzzy rule base.
The Fuzzication layer transforms the crisp inputs 
Xi to linguistic labels (Aij, like small, medium, 



large, etc.) with a degree of membership. The output 
of node ij is expressed as follows:

(4)

where µij is the jth membership function for the input 
Xi. Several types of MFs can be used, for example 
triangular curve, generalized bell function, trapezoidal 
curve, Gaussian function and the sigmoidal function 
which are used in this study. The triangular curve is 
a function of a vector, x, and depends on three scalar 
parameters a, b, and c, as follows:

(5)

where a and c locate the “feet” of the triangle and the 
parameter b locates the peak. The generalized bell 
function depends on three parameters a, b, and c as 
follows:

(6)

where a and b vary the width of the curve and the 
parameter c locates the center of the curve. Also, b is 
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Fig. 6. Schematic of the ANFIS structure.

usually positive. The trapezoidal curve is a function 
of a vector, x, and depends on four scalar parameters 
a, b, c, and d, as given by the following:

(7)

where the parameters a and d locate the “feet” of 
the trapezoid and the parameters b and c locate the 
“shoulders”. The Gaussian function depends on two 
parameters σ and c as given by the following:

(8)

where the parameter c locates the peak. The sigmoidal 
membership function is a mapping on the vector x, 
and depends on two parameters a and c as given in 
Equation 9. Depending on the sign of the parameter 
a, the sigmoidal membership function is inherently 
open to the right or to the left.

(9)

For each node k in the product layer, the output 
represents the weighting factor (ring strength) of 
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the rule k. The output Wk is the product of all its 
inputs as follows:

(10)

In the normalized layer, the output of each node k 
represents the normalized weighting factor W of the 
kth rule as follows:

(11)

Each node of the de-Fuzzication layer gives a 
weighted output of the rst order TSK-type fuzzy if-
then rule as follows:

(12)

where fk represents the output of kth TSK-type fuzzy 
rules as follows:

(13)

where pie1 and rk are called consequent parameters.
The output layer is a single-node layer that represents 
the overall output (Y) of the network as the sum of 
all weighted outputs of the rules:

(14)

4.2. ANFIS simulation process for dimensional 
error of BPP

The procedure of the ANFIS development for this 
study consists of three main steps including data set 
preparation, data pre-processing and developing the 
ANFIS network. 
The main data set comprising 270 pairs of ten inputs 
(combination of dimensional errors of the BPP ribs) 
and one output (standard deviation of the GDL contact 
pressure) is prepared based on the already mentioned 
nite element analysis. A sample of this database is 
shown in Table 5. It is important to process the data 

set into patterns before the ANFIS can be trained and 
the mapping learnt. Training/testing pattern vectors 
are formed. Each pattern is formed with an input 
condition vector and the corresponding target vector 
[19, 20]. The scale of the input and output data is 
an important matter to consider, especially when the 
operating ranges of process parameters are different. 
The scaling or normalizing ensures that the ANFIS 
will be trained effectively, without any particular 
variable skewing the results signicantly. As a result, 
all of the input parameters are equally important in 
the training of the network. The scaling is performed 
by mapping each term to a value between “0” and 
“1” using the following equation:

(15)

where enorm is the normalized value of input error, ei 
is the value of a certain variable (e1…e10) and emax and 
emin, respectively, are the maximum and minimum 
values of the independent dimensional error (with 
respect to the investigated dimensional tolerance of 
BPP ribs).
Then, the input pattern vectors are formed comprising 
270 and 239 pairs of input/output , respectively, for 
training and testing the network on the basis of the 
main data set. The Testing data series is presented 
to the trained network as new application data for 
verifying or testing the predictive accuracy of the 
network model. Thus, the network is evaluated using 
data that have not been used for training.
The schematic structure of the developed ANFIS 
models is illustrated in Fig. 7. There are 10 inputs 
considered for the ANFIS model including the 
dimensional errors of BPP ribs and the only output of 
the model is the standard deviation of GDL contact 
pressure. After the structure is xed, the performance 
of the model can be ne-tuned by adjusting its 
parameters. Dening fuzzy membership functions 
and corresponding values can be considered as an 
important stage in the modeling. The suitability of 
the architecture of the ANFIS is determined by trial 
and error. The Greed partitioning method is employed 
to partition the input space into a number of local 
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Table 5. Sample results of BPP/GDL contact simulation (±0.030 mm dimensional tolerance)

No.
Inputs : Dimensional Errors (mm) Outputs : Contact Pressure

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 Pave (MPa) Pstd (MPa)
1 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.8962 0.2120
2 0.03 0.03 0.03 0.03 0 0 0 0 0 0 0.9094 0.5159
3 0.03 0.03 0.03 0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 0.9149 0.9318
4 0.03 0 0 0 0.03 0.03 0.03 0 0 0 0.9116 0.5758
5 0.03 0 0 0 0 0 0 -0.03 -0.03 -0.03 0.9114 0.6105
6 0.03 0 0 0 -0.03 -0.03 -0.03 0.03 0.03 0.03 0.9052 0.8017
7 0.03 -0.03 -0.03 -0.03 0.03 0.03 0.03 -0.03 -0.03 -0.03 0.9172 1.0632
8 0.03 -0.03 -0.03 -0.03 0 0 0 0.03 0.03 0.03 0.9092 0.8124
9 0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 0 0 0 0.9143 0.8073

10 0 0.03 0 -0.03 0.03 0 -0.03 0.03 0 -0.03 0.9068 0.8195
11 0 0.03 0 -0.03 0 -0.03 0.03 0 -0.03 0.03 0.9068 0.8244
12 0 0.03 0 -0.03 -0.03 0.03 0 -0.03 0.03 0 0.9055 0.8243
13 0 0 -0.03 0.03 0.03 0 -0.03 0 -0.03 0.03 0.9071 0.8260
14 0 0 -0.03 0.03 0 -0.03 0.03 -0.03 0.03 0 0.9056 0.8191
15 0 0 -0.03 0.03 -0.03 0.03 0 0.03 0 -0.03 0.9053 0.8227
16 0 -0.03 0.03 0 0.03 0 -0.03 -0.03 0.03 0 0.9033 0.8232
17 0 -0.03 0.03 0 0 -0.03 0.03 0.03 0 -0.03 0.9054 0.8240
18 0 -0.03 0.03 0 -0.03 0.03 0 0 -0.03 0.03 0.9057 0.8219
19 -0.03 0.03 -0.03 0 0.03 -0.03 0 0.03 -0.03 0 0.9142 0.8989
20 -0.03 0.03 -0.03 0 0 0.03 -0.03 0 0.03 -0.03 0.9146 0.8985
21 -0.03 0.03 -0.03 0 -0.03 0 0.03 -0.03 0 0.03 0.9147 0.8902
22 -0.03 0 0.03 -0.03 0.03 -0.03 0 0 0.03 -0.03 0.9146 0.8988
23 -0.03 0 0.03 -0.03 0 0.03 -0.03 -0.03 0 0.03 0.9167 0.8983
24 -0.03 0 0.03 -0.03 -0.03 0 0.03 0.03 -0.03 0 0.9158 0.8955
25 -0.03 -0.03 0 0.03 0.03 -0.03 0 -0.03 0 0.03 0.9156 0.8932
26 -0.03 -0.03 0 0.03 0 0.03 -0.03 0.03 -0.03 0 0.9133 0.8916
27 -0.03 -0.03 0 0.03 -0.03 0 0.03 0 0.03 -0.03 0.9150 0.8841

Fig. 7. Schematic structure of the developed ANFIS models



fuzzy regions and generate the Takagi-Suguno fuzzy 
inference system (FIS) structure. Different types 
of MFs are tested to generate the fuzzy inference 
system. Root mean square error (RMSE) is used 
to evaluate the results. The Gaussian membership 
functions demonstrated the best performances for 
the model (Fig. 8). For example, properties of the 
ANFIS model for ±0.01 mm dimensional tolerance 
is presented in Table 6.

4.3. Integrated prediction model

In order to predict the standard deviation values for 
BPP/GDL contact pressure distribution, a MATLAB 
code was used to integrate the ANFIS models 
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Fig. 8. Sample plot of membership function for inputs (dimensional errors of the BPP ribs).

Table 6. Properties of ANFIS model for ±0.01 mm dimensional tolerance
ANFIS model for ±0.01 mm dimensional tolerance
Name of the Network NET 1
Type of the Network sugeno
Number of Inputs/Outputs 10 inputs and 1 output
Number of Input Membership Functions 27 (for each input)
Number of Output Membership Functions 27
Number of Rules 27
And Method prod
Or Method probor
ImpMethod prod
AggMethod sum
Defuzzication Method wtaver
Input Ranges [0 1]
Output Range [0.212 0.4276]
Inputs Membership Functions Type gaussmf
Output Membership Function Type linear

developed for various dimensional tolerances. Fig.9 
illustrates the main algorithm of the prediction code 
(integrated model). After the string of dimensional 
errors are given to the prediction network, a suitable 
ANFIS model is chosen based on the corresponding 
tolerance value. Then, the standard deviation of BPP/
GDL contact pressure can be properly predicted for 
the given error values (normalized inputs are used).

5. Evaluation of the predicted results

The testing data series is presented to the trained 
network as new application data for verifying or 
testing the predictive accuracy of the integrated 



prediction model. Thus, the network is evaluated 
using data that have not been used for training. Fig. 10 
shows the results of testing the integrated prediction 
network with 239 random test pairs. These pairs 
are selected randomly in the range of investigated 
dimensional tolerances (±0.01 mm to ±0.1 mm at 
interval of 0.01 mm) and simulated using the already 
mentioned nite element method to determine Pstd 
(standard deviation of GDL pressure distribution). 
Also, the predicted values of Pstd for the same pairs 
of inputs are obtained using the integrated prediction 
code to compare the results. Table 7 represents 

Fig. 9. The main model of BPP/GDL contact pressure prediction.

Fig. 10. Testing of the integrated prediction network with random test points.

obtained (nite element simulation) and predicted 
(ANFIS) values of Pstd (MPa) from the integrated 
neuro-fuzzy model together with percentage error as 
follows:

(16)

The regression line of the targets/outputs is shown 
in Fig. 11. It is indicated that assessed results have 
an acceptable accuracy in the specied range, and 
nite element simulation and ANFIS are feasible and 
effective for the study of dimensional error.
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Table 7. Obtained (FES) and predicted (ANFIS) values of Pstd (MPa) from the Integrated Neuro-Fuzzy Model together with 
Percentage Error.

No.
Inputs : Dimensional Errors (mm) Output : Pstd (MPa) Error (%)

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 FES ANFIS
1 0.005 -0.002 0.001 -0.001 0.004 -0.003 -0.008 -0.003 -0.002 -0.001 0.280 0.266 4.823
2 -0.002 0.001 0.002 -0.004 0.004 -0.002 -0.003 0.000 -0.003 -0.005 0.265 0.265 0.041
3 -0.001 -0.002 -0.002 0.001 -0.002 -0.005 0.002 0.001 0.000 0.003 0.256 0.252 1.506
4 0.004 -0.004 -0.001 0.002 -0.001 0.005 -0.003 0.004 -0.002 -0.001 0.269 0.256 4.955
5 0.002 -0.001 0.003 -0.001 -0.003 0.002 0.003 0.003 0.000 0.001 0.230 0.222 3.208
6 0.003 0.004 -0.004 0.007 -0.002 0.005 0.001 0.001 -0.002 0.003 0.227 0.232 1.987
7 -0.001 -0.002 0.001 -0.001 -0.006 -0.002 -0.001 -0.001 -0.005 0.008 0.278 0.271 2.425
8 -0.004 0.006 0.001 -0.001 0.002 -0.005 0.002 -0.003 0.002 -0.001 0.266 0.263 1.320
9 -0.003 -0.004 0.004 -0.001 -0.002 0.001 -0.001 -0.004 -0.003 0.000 0.257 0.252 1.957
10 0.003 -0.003 -0.002 -0.002 0.001 -0.006 0.005 -0.004 0.005 -0.002 0.276 0.280 1.278
… … … … … … … … … … … … … …
118 -0.007 0.028 -0.001 0.008 0.010 -0.006 -0.004 0.016 0.017 0.035 0.541 0.531 1.806
119 0.002 0.004 0.012 0.016 -0.002 -0.032 -0.002 0.018 0.001 0.012 0.481 0.493 2.533
120 -0.011 0.016 0.034 -0.007 0.016 0.005 -0.010 0.011 0.010 0.005 0.532 0.527 0.858
121 0.017 -0.025 0.000 -0.023 0.026 -0.002 -0.008 -0.009 0.002 -0.009 0.586 0.586 0.014
122 0.007 -0.003 -0.013 -0.033 0.019 -0.001 -0.010 -0.024 0.014 0.017 0.604 0.623 3.068
123 0.000 -0.019 0.049 -0.002 -0.010 -0.001 -0.007 0.005 -0.010 0.001 0.760 0.787 3.562
124 -0.031 -0.008 -0.016 0.032 -0.012 0.003 0.023 0.019 -0.023 -0.011 0.747 0.733 1.883
125 -0.017 -0.006 -0.016 -0.003 -0.011 0.010 -0.030 -0.005 -0.042 0.033 0.732 0.756 3.299
126 0.001 0.006 -0.022 -0.043 0.022 0.011 0.036 0.002 -0.008 0.006 0.669 0.679 1.535
127 -0.002 -0.007 -0.033 -0.028 0.027 -0.003 0.009 0.014 0.029 -0.005 0.675 0.682 1.010
128 -0.023 0.006 -0.012 0.037 0.010 -0.031 -0.005 -0.007 -0.031 0.022 0.791 0.754 4.693
… … … … … … … … … … … … … …

229 0.047 -0.022 -0.054 -0.054 0.025 0.000 -0.040 0.036 0.026 0.018 0.934 0.910 2.618
230 -0.035 0.001 0.060 -0.046 0.034 -0.012 -0.028 -0.008 0.020 0.002 1.077 1.104 2.496
231 0.063 0.005 0.036 -0.053 -0.041 0.035 -0.045 0.057 -0.012 0.018 1.025 0.994 2.952
232 0.014 -0.009 0.008 -0.018 0.016 0.036 -0.028 0.047 -0.012 0.013 0.803 0.806 0.452
233 0.029 0.050 0.039 0.004 0.007 -0.074 -0.030 0.046 -0.012 0.000 0.872 0.904 3.564
234 -0.008 0.017 -0.045 -0.008 0.029 -0.016 0.043 -0.026 -0.005 0.000 0.859 0.822 4.256
235 0.017 0.005 0.004 0.024 0.027 0.049 0.052 -0.030 -0.015 -0.015 0.872 0.914 4.816
236 -0.015 0.070 -0.016 -0.005 0.000 0.002 0.018 -0.005 -0.029 0.025 1.102 1.151 4.442
237 0.028 -0.010 -0.022 0.018 0.045 -0.019 0.053 0.021 -0.015 0.009 0.908 0.882 2.853
238 -0.012 0.023 -0.050 -0.016 -0.014 -0.047 0.030 0.052 0.024 -0.011 0.967 0.969 0.269
239 0.023 0.037 0.019 -0.005 -0.029 -0.053 -0.041 0.019 0.002 0.045 0.850 0.879 3.385
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6. Conclusions

With respect to the considerable effect of GDL pressure 
distribution on the performance of proton exchange 
membrane (PEM) fuel cells, a methodology based 
on parameterized nite element analysis (FEA) and 
an adaptive neuro-fuzzy inference system (ANFIS) 

was developed to predict contact pressure distribution 
on the gas diffusion layer due to dimensional errors 
of bipolar plate ribs. The methodology of the present 
study can be used to analyze the effect of dimensional 
tolerances of bipolar plates in PEM fuel cells. In this 
regard, nite element simulation was used to model 
the BPP/GDL contact behavior and calculate the 
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Fig.11. Cross-correlation between estimated and obtained 
values of Pstd (MPa).

GDL pressure distribution. The numerical results 
of the nite element solution were experimentally 
validated. Initially, a range of dimensional tolerances 
from ±0.01 mm to ± 0.1 mm at an interval of 0.01 
mm were modeled with the FEA, respectively, for 
different combinations of dimensional errors of 
bipolar plate ribs. Altogether, 270 series of nite 
element simulations were conducted in this research 
(10 different tolerances and 27 different combinations 
of dimensional errors). Then, ANFIS models were 
successfully trained and tested separately for each 
dimensional tolerance based on the main data set 
comprising 27 pairs of ten inputs (combination 
of dimensional errors of BPP ribs) and one output 
(standard deviation of the GDL contact pressure). 
Finally, separate ANFIS models were integrated 
together for predicting GDL pressure distribution in 
the whole tolerance range (±0.01 mm to ±0.1 mm). 
It was demonstrated that the proposed integrated 
prediction model was feasible and effective for the 
dimensional tolerances considered. The methodology 
developed in this study is benecial in improving 
the accuracy of BPP and can be applied to guide the 
manufacturing process for the PEM fuel cell.
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