1. Hassanzadeh, H., A. Ferdowsara, and M. Barzagary, Modeling of two phase flow in the cathode of gas diffusion layer of proton exchange membrane fuel cell. 2014.
2. Hassanzadeh, H., S.H. Golkar, and M. Barzagary, Modeling of two phase and non-isothermal flow in polymer electrolyte fuel cell. Modares Mechanical Engineering, 2015. 15(2): p. 313-322.
3. Hassanzadeh, H. and S.H. Golkar, Modeling and Optimization of non-isothermal two-phase flow in the cathode gas diffusion layer of PEM fuel cell. Iranian Journal of Hydrogen & Fuel Cell, 2015. 2(3): p. 159-168.
4. Zhan, Z., et al., Effects of porosity distribution variation on the liquid water flux through gas diffusion layers of PEM fuel cells. Journal of power sources, 2006. 160(2): p. 1041-1048.
5. Song, D., et al., Transient analysis for the cathode gas diffusion layer of PEM fuel cells. Journal of Power Sources, 2006. 159(2): p. 928-942.
6. Gerteisen, D., T. Heilmann, and C. Ziegler, Enhancing liquid water transport by laser perforation of a GDL in a PEM fuel cell. Journal of Power Sources, 2008. 177(2): p. 348-354.
7. Berning, T. and N. Djilali, A 3D, multiphase, multicomponent model of the cathode and anode of a PEM fuel cell. Journal of the Electrochemical Society, 2003. 150(12): p. A1589-A1598.
8. Luo, G., H. Ju, and C.-Y. Wang, Prediction of dry-wet-dry transition in polymer electrolyte fuel cells. Journal of The Electrochemical Society, 2007. 154(3): p. B316-B321.
9. Gurau, V., F. Barbir, and H. Liu, An analytical solution of a half‐cell Model for PEM fuel cells. Journal of the Electrochemical Society, 2000. 147(7): p. 2468-2477.
10. Shi, Z., X. Wang, and O. Draper, Effect of Porosity Distribution of Gas Diffusion Layer on Performance of Proton Exchange Membrane Fuel Cells. ECS Transactions, 2007. 11(1): p. 637-646.
11. Huang, Y.-X., et al., Effects of porosity gradient in gas diffusion layers on performance of proton exchange membrane fuel cells. Energy, 2010. 35(12): p. 4786-4794.
12. Lee, C.-I., et al. Effect of Porosity Gradient in Gas Diffusion Layer on Cell Performance With Thin-Film Agglomerate Model in Cathode Catalyst Layer of a PEM Fuel Cell. in ASME 2011 9th International Conference on Fuel Cell Science, Engineering and Technology collocated with ASME 2011 5th International Conference on Energy Sustainability. 2012. American Society of Mechanical Engineers Digital Collection.
13. Tseng, C.-J. and S.-K. Lo, Effects of microstructure characteristics of gas diffusion layer and microporous layer on the performance of PEMFC. Energy Conversion and Management, 2010. 51(4): p. 677-684.
14. Oh, H., et al., Effects of pore size gradient in the substrate of a gas diffusion layer on the performance of a proton exchange membrane fuel cell. Applied energy, 2015. 149: p. 186-193.
15. Chen, F., M.-H. Chang, and P.-T. Hsieh, Two-phase transport in the cathode gas diffusion layer of PEM fuel cell with a gradient in porosity. International Journal of Hydrogen Energy, 2008. 33(10): p. 2525-2529.
16. Kim, K.N., et al., Lattice Boltzmann simulation of liquid water transport in microporous and gas diffusion layers of polymer electrolyte membrane fuel cells. Journal of Power Sources, 2015. 278: p. 703-717.
17. Molaeimanesh, G. and M. Akbari, Impact of PTFE distribution on the removal of liquid water from a PEMFC electrode by lattice Boltzmann method. International Journal of Hydrogen Energy, 2014. 39(16): p. 8401-8409.
18. Shakerinejad, E., et al., Increasing the performance of gas diffusion layer by insertion of small hydrophilic layer in proton-exchange membrane fuel cells. International Journal of Hydrogen Energy, 2018. 43(4): p. 2410-2428.
19. Shan, X. and H. Chen, Lattice Boltzmann model for simulating flows with multiple phases and components. Physical Review E, 1993. 47(3): p. 1815.
20. Huang, H., M. Sukop, and X. Lu, Multiphase lattice Boltzmann methods: Theory and application. 2015: John Wiley & Sons.
21. Li, W., X. Wei, and A. Kaufman, Implementing lattice Boltzmann computation on graphics hardware. The Visual Computer, 2003. 19(7-8): p. 444-456.
22. Kuznik, F., et al., LBM based flow simulation using GPU computing processor. Computers & Mathematics with Applications, 2010. 59(7): p. 2380-2392.
23. Riegel, E., T. Indinger, and N.A. Adams, Implementation of a Lattice–Boltzmann method for numerical fluid mechanics using the nVIDIA CUDA technology. Computer Science-Research and Development, 2009. 23(3-4): p. 241-247.
24. Cheng, P., et al., Application of lattice Boltzmann methods for the multiphase fluid pipe flow on graphical processing unit. The Journal of Computational Multiphase Flows, 2018. 10(3): p. 109-118.
25. Zou, Q. and X. He, On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Physics of fluids, 1997. 9(6): p. 1591-1598.
26. Mukherjee, P.P., C.-Y. Wang, and Q. Kang, Mesoscopic modeling of two-phase behavior and flooding phenomena in polymer electrolyte fuel cells. Electrochimica Acta, 2009. 54(27): p. 6861-6875.
27. Kaviany, M., Principles of heat transfer in porous media. 2012: Springer Science & Business Media.
28. Mench, M.M., Fuel cell engines. 2008: John Wiley & Sons.
29. Feser, J., A. Prasad, and S.G. Advani, Experimental characterization of in-plane permeability of gas diffusion layers. Journal of power sources, 2006. 162(2): p. 1226-1231.
30. Gostick, J.T., et al., In-plane and through-plane gas permeability of carbon fiber electrode backing layers. Journal of Power Sources, 2006. 162(1): p. 228-238.
31. Sukop, M., DT Thorne, Jr. Lattice Boltzmann Modeling Lattice Boltzmann Modeling. 2006: Springer.
32. Tölke, J., Implementation of a Lattice Boltzmann kernel using the Compute Unified Device Architecture developed by nVIDIA. Computing and Visualization in Science, 2010. 13(1): p. 29.