Hydrothermal synthesis of nano-size zirconia using commercial zirconia powder: process optimization through response surface methodology

Document Type : Research Paper


1 National Iranian Gas Company (NIGC), No. 29, South Aban St., Karimkhan Blvd., Tehran, Iran.

2 Green Research Center (GRC) & School of Chemical Engineering (SChE) Iran University of Science & Technology

3 Fuel Cell Laboratory, Green Research Center, Iran University of Science and Technology, Narmak, Tehran, Iran.


A hydrothermal method for preparation of nano-size zirconia has been studied to optimize the effective parameters (precursor concentration, temperature and time) using response surface methodology (RSM). The synthesized zirconia samples were characterized through X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM) analyses to identify mean nanoparticles size of the zirconia powders and molar fraction of monoclinic and tetragonal (or cubic) crystalline phases. Since, tetragonal and cubic phases are more valuable for the technological applications than the monoclinic phase, improving synthesis of tetragonal and cubic crystalline phases has been considered. The analysis of the primary experimental data through RSM method for optimization of the parameters showed that a precursor concentration of about 0.0092 mol L–1, a reaction temperature of 150 °C and a reaction time of 83.18 h are the optimum process conditions which give a mean zirconia nanoparticles size of ~23 nm and a high molar fraction of tetragonal (or cubic) crystalline phases (~70%) simultaneously.


Main Subjects

            [1]     Srinivasan R., De Angelis R. J., Ice G. and Davis B. H., "Identification of tetragonal and cubic structures of zirconia using synchrotron x-radiation source", J. Mater. Res., 1991, 6, 1287.­­­­­­
            [2]     Bokhimi X., Morales A., Novaro O., Portilla M., Lopez T., Tzompantzi F. and Gomez R., "Tetragonal Nanophase Stabilization in Nondoped Sol–Gel Zirconia Prepared with Different Hydrolysis Catalysts", J. Solid State Chem., 1998, 135, 28.
            [3]     Saylkan F., Asilturk M., Burunkaya E. and Arpac E., "Hydrothermal synthesis and characterization of nanocrystalline ZrO2 and surface modification with 2-acetoacetoxyethyl methacrylate", J. Sol–Gel Sci. Technol., 2009, 51, 182.
            [4]     Dercz G., Prusik K. and Pająk L., "Structure investigations of commercial zirconia ceramic powder", J. Achiev. Mater. Manuf. Eng., 2006, 18, 259.
            [5]     Nakamura T., Sakamoto Y., Saji K. and Sakata J., "NOX decomposition mechanism on the electrodes of a zirconia-based amperometric NOX sensor", Sens. Actuators, B, 2003, 93, 214.
            [6]     Xu G., Zhang Y., Liao Ch. and Yan Ch., "Tetragonal-to-Monoclinic Phase Transitions in Nanocrystalline Rare-Earth-Stabilized Zirconia Prepared by a Mild Hydrothermal Method", J. Am. Ceram. Soc., 2004, 87, 2275.
            [7]     Chang H., Shady P. and Shih W., "The effects of containers of precursors on the properties of zirconia powders", Microporous Mesoporous Mater., 2003, 59, 29.
            [8]     Mazaheri M., Valefi M., Razavi Hesabi Z. and Sadrnezhaad S.K., "Two-step sintering of nanocrystalline 8Y2O3 stabilized ZrO2 synthesized by glycine nitrate process", Ceram. Int., 2009, 35, 13.
            [9]     Su C., Li J., He D., Cheng Z. and Zhu Q., "Synthesis of isobutene from synthesis gas over nanosize zirconia catalysts", Appl. Catal., A, 2000, 202, 81.
        [10]     Liu Q., Dong X., Mo X. and Lin W., "Selective catalytic methanation of CO in hydrogen-rich gases over Ni/ZrO2 catalyst", J. Nat. Gas Chem., 2008, 17, 268.
        [11]     Panpranot J., Taochaiyaphum N. and Praserthdam P., "Glycothermal synthesis of nanocrystalline zirconia and their applications as cobalt catalyst supports", Mater. Chem. Phys., 2005, 94, 207.
        [12]     Ma Z. Y., Yang Ch., Wei W., Li W. H. and Sun Y. H., "Catalytic performance of copper supported on zirconia polymorphs for CO hydrogenation", J. Mol. Catal. A: Chem., 2005, 231, 75.
        [13]     Therdthianwong S., Siangchin Ch. and Therdthianwong A., "Improvement of coke resistance of Ni/Al2O3 catalyst in CH4/CO2 reforming by ZrO2 addition", Fuel Process. Technol., 2008, 89, 160.
        [14]     Vasylkiv O. and Sakka Y., "Synthesis and Colloidal Processing of Zirconia Nanopowder", J. Am. Ceram. Soc., 2001, 84, 2489.
        [15]     Shukla S. and Seal S., "Mechanisms of room temperature metastable tetragonal phase stabilisation in zirconia", Int. Mater. Rev., 2005, 50, 1.
        [16]     Widiyastuti W., Balgis R., Iskandar F. and Okuyama K., "Nanoparticle for mationin spray pyrolysis under low-pressure conditions", Chem. Eng. Sci., 2010, 65, 1846.
        [17]     Kanade K.G., Baeg J.O., Apte S.K., Prakash T.L. and Kale B.B., "Synthesis and characterization of nanocrystallined zirconia by hydrothermal method", Mater. Res. Bull., 2008, 43, 723.
        [18]     Srdic V. V. and Winterer M., "Comparison of nanosized zirconia synthesized by gas and liquid phase methods", J. Eur. Ceram. Soc., 2006, 26, 3145.
        [19]     Wang J.A., Valenzuela M.A., Salmones J., Vázquez A., Garc´ıa–Ruiz A. and Bokhimi X., "Comparative study of nanocrystalline zirconia prepared by precipitation and sol–gel methods", Catal. Today, 2001, 68, 21.
        [20]     Kaya C., He J.Y., Gu X. and Butler E.G., "Nanostructured ceramic powders by hydrothermal synthesis and their applications", Microporous Mesoporous Mater., 2002, 54, 37.
        [21]     Miya S.S. and Roy R., "Hydrothermal synthesis of fine oxide powders", Bull. Mater. Sci., 2000, 23, 453.
        [22]     Piticescu R., Monty C. and Millers D., "Hydrothermal synthesis of nanostructured zirconia materials: Present state and future prospects", Sens. Actuators, B, 2005, 109, 102.
        [23]     Esmaeilifar A., Yazdanpour M., Rowshanzamir S. and Eikani M. H., "Hydrothermal synthesis of Pt/MWCNTs nanocomposite electrocatalysts for proton exchange membrane fuel cell systems", Int. J. Hydrogen Energy, 2011, 36, 5500.
        [24]     Muthuvelayudham R. and Viruthagiri T., "Application of Central Composite Design Based Response Surface Methodology in Parameter Optimization and on Cellulase Production Using Agricultural Waste", Int. J. Chem. Biol. Eng., 2010, 3, 97.
        [25]     Myers R.H., Montgomery D.C. and Anderson C.M., Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John Wiley & Sons, 2009.
        [26]     Carley K.M., Kamneva N.Y. and Reminga J., Response Surface Methodology, CASOS Technical Report, Carnegie Mellon University, 2004.
        [27]     Park S.H., Kim H.J. and Cho J.I., Optimal center composite designs for fitting second order response surface regression models, Korea Science & Engineering Foundation, 2000.
        [28]     Tahmasebpour M., Babaluo A.A. and Aghjeh M.K. R., "Synthesis of zirconia nanopowders from various zirconium salts via polyacrylamide gel method", J. Eur. Ceram. Soc., 2008, 28, 773.
        [29]     Ilavsky J. and Stalick J.K., "Phase composition and its changes during annealing of plasma-sprayed YSZ", Surf. Coat. Technol., 2000, 127, 120.
        [30]     Szepesi C.J. and Adair J.H., "High Yield Hydrothermal Synthesis of Nano-Scale Zirconia and YTZP", J. Am. Ceram. Soc., 2011, 94, 4239.
        [31]     Indarto A., Choi J.W., Lee H. and Song H.K., "A review of C1 chemistry synthesis using yttrium-stabilized zirconia catalyst", J. Rare Earths, 2008, 26, 1.
        [32]     Yin X., You Q. and Jiang Z., "Optimization of enzyme assisted extraction of polysaccharides from Tricholoma matsutake by response surface methodology", Carbohydr. Polym., 2011, 86, 1358.
        [33]     Pozhidaeva O.V., Korytkova E.N., Romanov D.P. and Gusarov V.V., "Formation of ZrO2 Nanocrystals in Hydrothermal Media of Various Chemical Compositions", Russ. J. Gen. Chem., 2002, 72, 849.
        [34]     Qin D. and Chen H., "The influence of alcohol additives on the crystallization of ZrO2 under hydrothermal conditions", J. Mater. Sci., 2006, 41, 7059.