"Physical properties and electronic structure of LaNi5 compound before and after hydrogenation: An experimental and theoretical approach"

Document Type : Research Paper


1 Magnetism and Superconducting Research Laboratory, Department of Physics, Faculty of Science, University of Birjand, Birjand, Iran.

2 Department of physics, Ferdowsi University of Mashhad

3 Department of Material Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.


The present study deals with the experimental and theoretical approaches of LaNi5 hydrogen storage alloy. The structural, morphological and hydrogenation characterization of this sample which is synthesized by the arc melting technique were carried out by X-ray diffraction, scanning electron microscopy and a homemade Sievert's type apparatus, respectively. The results showed that after several hydrogenation/dehydrogenation cycles, disproportionation occur in LaNi5. The hydriding kinetic measurements under different applied pressure show that the hydrogen storage capacity (Cwt.%) increases with pressure. However, kinetic analysis at different temperatures under constant initial pressure, which is fitted to two models such as Jander diffusion model and Johnson-Mehl-Avarmi, revealed that Cwt.% and hydriding reaction rate are decreased and increased by increasing of temperature, respectively. The theoretical study using full potential linearized augmented plane wave plus local orbitals method was also performed to investigate the structural, energetic and electronic properties of LaNi5 and its saturated hydride (LaNi5H7). From the two possible space groups for LaNi5H7, P63mc was found as the most favorable one. A volume expansion of ~%26 was found for its hydride. Other calculated results including the equilibrium atomic positions, bulk modulus and the enthalpy of formation were in good agreement with other theoretical and experimental results. The band structure calculations showed that the valence bands were mainly derived from Ni-3d states, and the bandwidth of the occupied Ni-3d bands in hydride phase was narrower than that of the parent compound due to the filling of Ni-3d bands as a result of hydrogen absorption and volume expansion.


Main Subjects

[1] Hirscher M., Handbook of Hydrogen Storage: New Materials for Future Energy Storage, Wiley-VCH. Press, 2010.
[2] Broom D. P., Hydrogen Storage Materials, Green Energy and Technology, Springer-Verlag, 2011.
[3] Alefeld G. and Völkl J., Hydrogen in Metals II, Topics in Applied Physics, Springer-Verlag, 1978.
[4] Zhu K. G., Shi J. Z. and Zhang L.D., “Effect of temperature on electrical resistivity of a hydrogenated LaNi5 thin film", Chin. Phys., 1998, 7: 504
[5] Lin S. J. and Zheng H. P., "Electronic structure of the surface of LaNi5 crystal", Acta Phys. Sin., 2005, 10: 4680
[6] Rozdzynska-Kielbik B., Iwasieczko W., Drulis H., Pavlyuk V.V. and Bala, H., "Hydrogenation equilibria characteristics of LaNi5-xZnx intermetallics", ", J. Alloys Comp., 2000, 298: 237
[7] Zareii S. M. and Sarhaddi R., "Structural, electronic properties and heat of formation of Mg2FeH6 complex hydride: an ab initio study", Phys. Scr., 2012, 86: 015701
[8] Mungole M. N., Balasubramaniam R. and Rai K. N., "Magnetization behavior of hydrogen storage MmNi5 intermetallics with Al, Mn and Sn substitutions", Int. J. Hydrogen Energy, 1997, 22: 679
[9] Biris A., Bucur R.V., Ghete P., Indrea E. and Lupu D., "The solubility of deuterium in LaNi5", J. Less-Common Met., 1976, 49: 477
[10] Tatsumi K., Tanaka I., Inui H., Tanaka K., Yamaguchi M. and Adachi H., "Atomic structures and energetics of LaNi5-H solid solution and hydrides", Phys. Rev. B, 2001, 64: 184105.
[11] Hector Jr L.G., Herbst J. F. and Capehart T. W., "Electronic structure calculations for LaNi5 and LaNi5H7: energetics and elastic properties", J. Alloys Comp., 2003, 353: 74
[12] Lartigue C., Le Bail A. and Percheron-Guegan A., "A new study of the structure of LaNi5D6.7 using a modified Rietveld method for the refinement of neutron powder diffraction data", J. Less-Common Met., 1987, 129: 65
[13] Al Alam A. F., Matar S. F., Nakhl M. and Ouaïni N., "Investigation of changes in crystal and electronic structures by hydrogen within LaNi5 from first-principles", Solid State Sciences, 2009, 11: 1098
[14] Blaha P., Schwarz K., Madsen G. K. H., Kvanicka D. and Luitz J., An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology, 2001.
[16] Perdew J. P., Burke K. and Ernzerhof M., "Generalized Gradient Approximation Made Simple", Phys. Rev. Lett., 1996, 77: 3865
[17] Blochl P. E., Jepsen O. and Andersen O. K., "Improved tetrahedron method for Brillouin-zone integrations", Phys. Rev. B, 2004, 49: 16223
[18] Nakamura Y., Sato K., Fujitani S., Nishio K., Oguro K. and Uehara I., "Lattice expanding behavior and degradation of LaNi5-based alloys", J. Alloys Comp., 1998, 267: 205
[19] Srivastava S. and Upadhyaya R. K., "Investigations of AB5-type hydrogen storage materials with enhanced hydrogen storage capacity", Int. J. Hydrogen Energy, 2001, 36: 7114
[20] Ahn H. J. and Lee J. Y., "Intrinsic degradation of LaNi5 by the temperature induced hydrogen absorption-desorption cycling", Int. J. Hydrogen Energy, 1991, 16: 93
[21] Tian X., Liu X-d., Xu J., Feng H-w., Chi B., Huang L-H and Yan S-F., "Microstructures and electrochemical characteristics of Mm0.3Ml0.7Ni3.55Co0.75Mn0.4Al0.3 hydrogen storage alloys prepared by mechanical alloying", Int. J. Hydrogen Energy, 2009, 34: 2295
[22] Cerny R., Joubert J.-M., Latroche M., Percheron-Guegan A. and Yvon K.; "Anisotropic diffraction peak broadening and dislocation substructure in hydrogen-cycled LaNi5 and substitutional derivatives", J. Appl. Cryst., 2000, 33: 997
[23] Srivastava S. and Srivastava O. N., "Investigations of synthesis and characterization of MmNi4.3Al0.3Mn0.4 and MmNi4.0Al0.3Mn0.4Si0.3, hydrogen storage materials through thermal and spin melting processes", Int. J. Hydrogen Energy, 1998, 23: 7
[24] Li S.L., Chen W., Chen D.M. and Yang K., “Effect of long-term hydrogen absorption/desorption cycling on hydrogen storage properties of MmNi3.55Co0.75Mn0.4Al0.3”, J. Alloys Compd., 2009, 474:164
[25] Li S.L., Chen W., Luo G., Han X.B., Chen D.M., Yang K. and Chen W.P., “Effect of hydrogen absorption/desorption cycling on hydrogen storage properties of a LaNi3.8Al1.0Mn0.2 alloy”, Int. J. Hydrogen Energy, 2012, 37:3268
[26] Johnson D. G. and Pangborn J. B., ibid., 1980, 73: 127
[27] Zhang T. B., Wang X. F., Hu R., Li J. S., Yang X. W., Xue X. Y. and Fu H. Z., "Hydrogen absorption properties of Zr(V1-xFex)2 intermetallic compounds", Int. J. Hydrogen Energy, 2012, 37: 2328
[28] Ivey D. G. and Northwood D. O., "Storing energy in metal hydrides: a review of the physical metallurgy", J. Mater. Sci., 1983, 18: 321
[29] Haberman Z., Bloch J., Mintz M. H. and I Jacob I., "Kinetics of hydride formation in massive LaAl0.25Ni4.75 samples", J. Alloys Compd., 1997, 253-254: 556
[30] Muthukumar P., Satheesh A., Linde M., Mertz R. and Groll M., "Studies on hydriding kinetics of some La-based metal hydride alloys", Int. J. Hydrogen Energy, 2009, 34: 7253
[31] Ming L., Lavendar E., Goudy A.J., “The hydriding and dehydriding kinetics of some RCo5 alloys”, Int. J. Hydrogen Energy, 1997, 22: 63.
[32] Chou K. C., Xu K. D., "A new model for hydriding and dehydriding reactions in intermetallics", Intermetallics, 2007, 15: 767
[33] Zhang X., Li Q. and Chou K. C., " Kinetics of hydrogen absorption in the solid solution region for Laves phase Ho1-xMmxCo2 (x = 0, 0.2 and 0.4) alloys", Intermetallics, 2008, 16:1258
[34] Jander W., Reaktionen im festen Zustande bei höheren Temperaturen. Reaktionsgeschwindigkeiten endotherm verlaufender Umsetzungen, Z. Anorg. Allg. Chem., 1927, 163: 1
[35] Johnson W. A. and Mehl R. F., "Reaction kinetics in processes of nucleation and growth", Trans. Am. Inst. Min. Metall. Eng., 1939, 135: 416
[36] Murnaghan F. D., "The Compressibility of Media under Extreme Pressures"; Proc. Natl. Acad. Sci. USA, 1944, 30: 244
[37] Feynman R. P., "Forces in Molecules", Phys. Rev., 1939, 56: 340
[38] Nakamura H., Nguyen-Manh D. and Pettifor D.G., "Electronic structure and energetics of LaNi5, α-La2Ni10H and β-La2Ni10H14", J. Alloys Comp., 1998, 281: 81
[39] Bereznitsky M., Ode A., Hightower J. E., Yeheskel O., Jacob I. and Leisure R. G., "Elastic moduli of polycrystalline LaAlxNi5−x", J. Appl. Phys. , 2002, 91: 5010
[40] Brouha M. and Buschow K. H. J., "Magnetic properties of LaCo5xNi5-5x", J. Phys. F: Metal Phys., 1975, 5: 543
[41] Tanaka K., Okazaki S., Ichitsubo T., Yamamoto T., Inui H., Yamguchi M. and Koiwa M., "Evaluation of elastic strain energy associated with the formation of hydride precipitates in LaNi5", Intermetallics, 2000, 8: 613
[42] Bouhadda Y., Rabehi A., Boudouma Y., Fenineche N., Drablia S. and Meradji H., "Hydrogen solid storage: First-principles study of ZrNiH3", Int. J. Hydrogen Energy, 2009, 34: 4997
[43] Hubbard W. N., Rawlins P. L., Connick P. A., Stedwell Jr R. E. and O'Hare P. A. G., "The standard enthalpy of formation of LaNi5 The enthalpies of hydriding of LaNi5−xAlx", The Journal of Chemical Thermodynamics, 1983, 15: 785
[44] Murray J. J., Post M. L. and Taylor J. B., "The thermodynamics of the LaNi5-H2 system by differential heat flow calorimetry II: The α and β single-phase regions", J. Less-Common Met., 1981, 80: 211
[45] Wallace W.E. and Pourarian. F., "Photoemission Studies of LaNi5-xCux Alloys and Relation to Hydride Formation", J. Phys. Chem., 1982, 86: 4958
[46] Knyazev Y. V., Lukoyanov A. V., Kuzmin Y. I. and Kuchin A. G., "Effect of Cu-doping on the electronic structure and optical properties of LaNi5", J. Alloys Comp., 2011, 509: 5238
[47] Fuggle J. C., Hillebrecht F. U., Zeller R., Zolnierek Z., Bennett P. A. and Freiburg Ch., "Electronic structure of Ni and Pd alloys. I. X-ray photoelectron spectroscopy of the valence bands", Phys. Rev. B, 1982, 27: 2145
[48] Weaver J. H., Franciosi A., Wallace W. E.and Smith H. K., "Electronic structure and surface oxidation of LaNi5, Er6Mn23, and related systems", J. Appl. Phys., 1980, 51: 5847