Document Type : Research Paper
Authors
1 Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
2 Department of Materials Science & Eng., Sharif University of , Tehran, Iran
3 Renewable Energy Department, Niroo Research Institute, Tehran, Iran
Abstract
Keywords
Main Subjects
[1]. Jacobson, A.J., Materials for solid oxide fuel cells. Chemistry of Materials, 2010. 22(3): p. 660-674.
[2]. Steele, B.C. and A. Heinzel, Materials for fuel-cell technologies, in Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. 2011, World Scientific. p.224-231.
[3]. Yamamoto, O., Solid oxide fuel cells: fundamental aspects and prospects. Electrochimica Acta, 2000. 45(15-16): p. 2423-2435.
[4]. Sun, C., R. Hui, and J. Roller, Cathode materials for solid oxide fuel cells: a review. Journal of Solid State Electrochemistry, 2010. 14(7): p. 1125-1144.
[5]. Manthiram, A., et al., Crystal chemistry and properties of mixed ionic-electronic conductors. Journal of electroceramics, 2011. 27(2): p. 93-107.
[6]. Kilner, J.A. and M. Burriel, Materials for intermediate-temperature solid-oxide fuel cells. Annual Review of Materials Research, 2014. 44: p. 365-393.
[7]. Huan, D., et al., High-performanced cathode with a two-layered R–P structure for intermediate temperature
solid oxide fuel cells. ACS Applied Materials & Interfaces, 2016. 8(7): p. 4592-4599.
[8]. Torabi, M., et al., Experimental investigation of a solid oxide fuel cell stack using direct reforming natural gas. Iranian Journal of Hydrogen & Fuel Cell, 2017. 4(4): p. 301-306.
[9]. Ghorbani-Moghadam, T., et al., Characterization, Electrical and Electrochemical Study of La 0.9 Sr 1.1 Co 1− x Mo x O 4 (x≤ 0.1) as Cathode for Solid Oxide Fuel Cells. Journal of Electronic Materials, 2020. 49(11): p. 6448-6454.
[10]. Armstrong, T., F. Prado, and A. Manthiram, Synthesis, crystal chemistry, and oxygen permeation properties of
LaSr3Fe3− xCoxO10 (0≤ x≤ 1.5). Solid state ionics, 2001. 140(1-2): p. 89-96.
[11]. Woolley, R.J. and S.J. Skinner, Novel La2NiO4+ δ and La4Ni3O10− δ composites for solid oxide fuel cell
cathodes. Journal of power sources, 2013. 243: p. 790-795.
[12]. Kim, J.-H. and A. Manthiram, Characterization of Sr2. 7Ln0. 3Fe1. 4Co0. 6O7 (Ln= La, Nd, Sm, Gd) intergrowth
oxides as cathodes for solid oxide fuel cells. Solid State Ionics, 2009. 180(28-31): p. 1478-1483.
[13]. Kim, J.-H., et al., Crystal chemistry and electrochem ical properties of Ln (Sr, Ca) 3 (Fe, Co) 3 O 10 intergrowth
oxide cathodes for solid oxide fuel cells. Journal of Materials Chemistry, 2011. 21(8): p. 2482-2488.
[14]. Kim, Y. and A. Manthiram, Electrochemical properties of Ln (Sr, Ca) 3 (Fe, Co) 3O10+ Gd0. 2Ce0. 8O1. 9
composite cathodes for solid oxide fuel cells. Journal of The Electrochemical Society, 2011. 158(10): p. B1206.
[15]. Lee, K. and A. Manthiram, LaSr3Fe3-y Co y O10-δ (0≤ y≤ 1.5) Intergrowth Oxide Cathodes for Intermediate
Temperature Solid Oxide Fuel Cells. Chemistry of materials, 2006. 18(6): p. 1621-1626.
[16]. Manthiram, A., F. Prado, and T. Armstrong, Oxygen separation membranes based on intergrowth structures.
Solid State Ionics, 2002. 152: p. 647-655.
[17]. Markov, A.A., et al., Oxygen nonstoichiometry and ionic conductivity of Sr3Fe2-x Sc x O7-δ. Chemistry of
materials, 2007. 19(16): p. 3980-3987.
[18]. Mohebbi, H., et al., The Effect of Process Parameters on the Apparent Defects of Tape-Cast SOFC Half-Cell.
[19]. Huan, D., et al., High-performanced cathode with a two-layered R–P structure for intermediate temperature solid oxide fuel cells. 2016. 8(7): p. 4592-4599.
[20]. Padmasree, K.P., et al., Electrochemical properties of Sr2.7-xCaxLn0.3Fe2-yCoyO7-δ cathode for intermediate-
temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2019. 44(3): p. 1896-1904.
[21]. Kuo, J., H.U. Anderson, and D.M.J.J.o.S.S.C. Sparlin, Oxidation-reduction behavior of undoped and Sr-doped
LaMnO3 nonstoichiometry and defect structure. 1989. 83(1): p. 52-60.
[22]. Zhou, Q., et al., Novel cobalt-free cathode material (Nd0. 9La0. 1) 2 (Ni0. 74Cu0. 21Al0. 05) O4+ δ for intermediate-temperature solid oxide fuel cells. 2015. 41(1): p.639-643.
[23]. Zhao, Y., et al., Performance and distribution of relaxation times analysis of Ruddlesden-Popper oxide Sr3Fe1.
3Co0. 2Mo0. 5O7-δ as a potential cathode for protonic solid oxide fuel cells. 2020. 352: p. 136444.