Comparative Numerical Study of Co- and Counter-Flow Configurations of an All-Porous Solid Oxide Fuel Cell

Document Type : Research Paper

Author

Department of Mechanical Engineering, Parand Branch, Islamic Azad University, Parand, Iran

Abstract

The All-Porous Solid Oxide Fuel Cell is a concept in which the electrolyte layer, similar to the other two layers, is porous. Thus, firm sealing between cell layers is not a concern, and fuel and oxidant are free to intermix through the porous electrolyte. Furthermore, The All-Porous Solid Oxide Fuel Cell does not need any sealant, and crack generation in its electrolyte component does not terminate cell operation. Cell performance enhancement, based on the flow geometry, is the main target of this study. To achieve this goal, two flow configurations, co-flow and counter-flow, are considered and compared for a hydrogen-fuelled planar All-Porous Solid Oxide Fuel Cell. A finite element method-based commercial software is utilized to solve the nonlinear governing equations of mass, momentum, energy, charge balance, and gas-phase species coupled with kinetics equations. The results include velocity field distribution, species mole fraction in different layers, and temperature contours within the cell. Results show that the counter flow configuration concept reveals better cell performance.

Keywords

Main Subjects


[1] EG and G Technical Services, Inc. Science Applications International Corporation, Fuel Cell Handbook, sixth edition, US Department of Energy, 2002.
[2] M. Kamvar, M. Ghassemi and M. Rezaei, Effect of catalyst layer configuration on single chamber solid oxide fuel cell performance, Journal of Applied Thermal Engineering, Vol. 100, pp.98-104, (2016), doi: 10.1016/j.applthermaleng.2016.01.128.
[3] J. Kupecki, K. Motylinski, A. Zurawska, M. Kosiorek and L. Ajdys, Numerical analysis of an SOFC stack under loss of oxidant related fault conditions using a dynamic non-adiabatic model, Int. J. Hydrogen Energy, Vol. 44, pp. 21148-21161, (2019), doi: 10.1016/j.ijhydene.2019.04.029.
[4] E.A. El-Hay, M.A. El-Hameed, A.A. El-Fergany, Optimized Parameters of SOFC for steady state and transient simulations using interior search algorithm, J. Energy, Vol. 166, pp.451-461, (2018), doi: 10.1016/j.energy.Energy.2018.10.038.
[5] J. Moreno-Blanco, F. Elizalde-Blancas, J.M. Riesco-Avila, J.M. Belman-Flores and A. Gallego-Munoz, On the effect of gas channels-electrode interface area on SOFCs performance, Int. J. Hydrogen Energy, Vol. 44, pp. 446-456, (2019), doi: 10.1016/j.ijhydene.2018.02.108.
[6]  A.Amiri, S.Tang, R.Steinberger-Wilckens, M.O.Tadé: Evaluation of Fuel Diversity in Solid Oxide Fuel Cell Systems, Int. J. Hydrogen Energy, Vol. 43, pp. 23475-23487 (2018).
[7] R. Bove and S. Ubertini, Modeling Solid Oxide Fuel Cells, Methods, Procedures and Technologies, 1st ed. Springer, (2008).
[8] Y. Wang, W. Jiang, Y. Luo, Y. Zhang and Sh. Tu, Evolution of thermal stress and failure probability during reduction and re-oxidation of solid oxide fuel cell, J. Power Sources, Vol. 371, pp. 65-76, (2017), doi: 10.1016/j.jpowsour.2017.10.034.
[9] Y. Hao, Z. Shao, J. Mederos, W. Lai, D. G. Goodwin, S. M. Haile, Recent advances in single-chamber fuel cells: Experiment and modeling, Solid State Ionics 177 2013-2021 (2006) doi:10.1016/j.ssi.2006.05.008.
[10] S. Ahn, Y. Kim, J. Moon, J. Lee, J. Kim, Influence of patterned electrode geometry on performance of co-planar, single-chamber, solid oxide fuel cell, J. Power Sources 171 511-516 (2007) .doi:10.1016/j.jpowsour.2007.06.025.
[11] M. Yano, A. Tomita, M. Sano, T. Hibino, Recent advances in single-chamber solid oxide fuel cells: A review, Solid State Ionics 177 3351-3359 (2007) doi:10.1016/j.ssi.2006.10.014.
[12] N. Akhtar, Single-Chamber Solid Oxide Fuel Cells: Modeling and Experiments, PhD thesis, University of Birmingham (2010).
[13] M. Yano, A. Tomita, M. Sano and T. Hibino, Recent advances in single-chamber solid oxide fuel cells: A review, Solid State Ionics 177 3351-3359 (2007) doi:10.1016/j.ssi.2006.10.014.
[14] N. Akhtar, S. P. Decent, K. Kendall, Numerical modelling of methane-powered micro-tubular, single-chamber solid oxide fuel cell, J. Power Sources 195 7796-7807 (2010) doi:10.1016/j.jpowsour.2010.01.084.
[15] T. Hibino and H. Iwahara, Simplification of solid oxide fuel cell system using partial oxidation of methane, Chemistry Letters 22 1131-1134 (1993) doi:10.1246/cl.1993.1131.
[16] Kamvar M., Ghassemi M. and Steinberger-Wilckens R., The numerical investigation of a planar single chamber solid oxide fuel cell performance with a focus on the support types, Int. J. Hydrogen Energy, Vol. 45, pp. 7077-7087, (2020), doi:10.1016/j.ijhydene.2019.12.220.
[17] Ch. Y. Chung, Y. Ch. Chung, Performance characteristics of micro single-chamber solid oxide fuel cell: Computational analysis, J. Power Sources 154 35-41 (2006) doi:10.1016/j.jpowsour.2005.03.229.
[18] M. Liu, Zh. Lu, B. Wei, X. Huang, Y. Zhang, W. Su, Numerical modeling of methane-powered micro-tubular, single-chamber solid oxide fuel cel, J. Power Sources 195 7796-7807 (2010).
[19] N. Akhtar, S. P. Decent, D. Loghin, K. Kendall, A three dimensional numerical model of a single-chamber solid oxide fuel cell, Int. J. Hydrogen Energy 34 8645-8663 (2009) doi:10.1016/j.ijhydene.2009.07.113.
[20] N. Akhtar, S. P. Decent, K. Kendall, A parametric analysis of a micro-tubular, single-chamber solid oxide fuel cell (MT-SC-SOFC), Int. J. Hydrogen Energy 36 765-772 (2011) doi:10.1016/j.ijhydene.2010.10.032.
[21] X. Jacques-Bedrad, T.W. Napporn, R. Roberge, M. Meunier, Performance and ageing of an anode-supported SOFC operated in single-chamber conditions, J. Power Sources 153 108-113 (2006) doi:10.1016/j.jpowsour.2005.03.138.
[22] B. Morel, R. Roberge, S. Savoie, T. W. Napporn, M. Meunier, Temperature and performance variations along single chamber solid oxide fuel cells, J. Power Sources 186 89-95 (2009) doi:10.1016/j.jpowsour.2008.09.087.
[23] Y. Hao, D. G. Goodwin, Numerical Modeling of Single-Chamber SOFCs with Hydrocarbon Fuels, J. Electrochem. Soc. 154 (2) B207-B217 (2007).
[24] N. Akhtar, K. Kendall, Micro-tubular, solid oxide fuel cell stack operated under single-chamber conditions, int. J. Hydrogen Energy 36 13083-13088 (2011) doi:10.1016/j.ijhydene.2011.07.057.
[25] N. Akhtar, Micro-tubular, single-chamber solid oxide fuel cell (MT-SC-SOFC) stacks: Model development, Chemical Engineering Research and Design 90 814-824 (2012) doi:10.1016/j.cherd.2011.09.013.
[26] N. Akhtar, Modeling of novel porous inserted micro-tubular, single-chamber solid oxide fuel cells (MT-SC-SOFC), Chemical Engineering Journal 179 277-284 (2012) doi:10.1016/j.cej.2011.11.001.
[27] Y. Hao and D.G. Goodwin, Efficiency and fuel utilization of methane-powered single-chamber solid oxide fuel cells, J. Power Sources 183 157-163 (2008).
[28] Kong W., Han Zh., Lu S., Gao X., Wang X., A novel interconnector design of SOFC, Int. J. Hydrogen Energy, Vol. 45, pp. 20329-20338, (2020). doi:10.1016/j.ijhydene.2019.10.252
[29] Schluckner C., Subotic V., Preibl S., Hochenauer C., Numerical analysis of flow configurations and electrical contact positions in SOFC single cell and their impact on local effects, Int. J. Hydrogen Energy, Vol. 44, pp. 1877-1895, (2019), doi: 10.1016/j.ijhydene.2018.11.132.
[30] Moreno-Blanco J., Elizalde-Blancas F., Riesco-Avila J.M., Belman-Flores J.M., Gallegos-Munoz A., On the effect of gas channels-electrode interface area on SOFCs performance, Int. J. Hydrogen Energy, Vol. 44, pp. 446-456, (2019), doi: 10.1016/j.ijhydene.2018.02.108.
[31] Y. Guo, M. Bessaa, S. Aquado, M. Cesar Steil, D. Rembelski, M. Rieu, et al., An all porous solid ocide fuel cell (SOFC): a bridging technology between dual and single chamber SOFCs, Energy Environ. Sci. 6 2119-2123 (2013) doi:10.1039/c3ee40131f.
[32] H. Xu, B. Chen, P. Tan, J. Xuan, M. Mercedes, et al., Modelling of all-porous solid oxide fuel cells with a focus on the electrolyte porosity design, Applied Energy 235 602-611 (2019) doi:10.1016/j.apenergy.2018.10.069.
[33] H. Xu, B. Chen, P. Tan, Y. Zhang, Q. He, et al., The thermal effects of all-porous solid oxide fuel cells, J. Power Sources 440 227102 (2019) doi:10.1016/j.jpowsour.2019.227102.
[34] B. Timurkutluk, S. Celik, C. Timurkutluk, M.D. Mat and Y. Kaplan, Novel electrolytes for solid oxide fuel cells with improved mechanical properties, Int. J. Hydrogen Energy 37 13499-13509  (2012) doi:10.1016/j.ijhydene.2012.06.103.
[35] D.A. Nield and A. Bejan, Convection in Porous Media, Springer, 3rd edition, 2006.
[36] M. Ghassemi, M. Kamvar and R. Steinberger-wilckens, Fundamentals of heat and fluid flow in high temperature fuel cells, Elsevier, 1st edition, 2020.
[37] G.K. Batchelor, An Introduction To Fluid Dynamics, Cambridge University Press, 2000.
[38] B. Todd and J.B. Young, Thermodynamic and transport properties of gases for use in solid oxide fuel cell modelling, J. Power Sources 110 186-200 (2002).
[39] R. Taylor and R. Krishna, Multicomponent mass transfer, 1th ed., John Willey & Sons, Inc. (1993).
[40] M.M. Hussain, X. Li, I. Dincer, Mathematical modeling of planar solid oxide fuel cells, J. Power Sources 161 1012-1022 (2006) doi:10.1016/j.jpowsour.2006.05.055.
[41] V.M. Janardhanan and O. Deutschmann, CFD analysis of a solid oxide fuel cell with internal reforming: Coupled interactions of transport, heterogeneous catalysis and electrochemical processes, J. Power Sources 162 1192-1202 (2006) doi:10.1016/j.jpowsour.2006.08.017
[42] H. Zhu, R.J. Kee, V.M. Janardhanan. O. Deutschmann and D.G. Goodwin, Modeling elementary heterogeneous chemistry and electrochemistry in solid-oxide fuel cells, J. Electrochem. Soc. 152 A2427-A2440 (2005) doi: 10.1149/1.2116607
[43] K. Huang and J.B. Goodenough, Solid oxide fuel cell technology principles, performance and operations, CRC Press 1st ed. (2009).
[44] D.H. Jeon, A comprehensive CFD model of anode-supported solid oxide fuel cells, Electrochemica Acta 54 2727-2736, (2009) doi:10.1016/j.electacta.2008.11.048
[45] Y.A. Cengel, M.A. Boles and M. Kanoglu, Thermodynamics: An Engineering Approach, Mc Graw Hill, 9th ed. (2019).
[46] M. Kaviany, Principles of heat transfer in porous media, Springer, second ed. (1995).