[1] Zuttel, A., Materials for hydrogen storage., Mater Today, 2003, 6:24–33.
[2] Tylianakis, E., Dimitrakakis, G.K., Melchor, S. et al., Designing novel nanoporous architectures of carbon nanotubes for hydrogen storage., Int J Hydrogen Energy, 2014, 39:9825–9829.
[3] Fukuzumi, S., Suenobu, T., Hydrogen storage and evolution catalysed by metal hybrid complexes, Dalton Trans., 2013, 42:18–28.
[4] Assfour, B., Leoni, S., Yurchenko, S., Seifert, G., Hydrogen storage in zeolite imidazolate frameworks. A multiscale theoretical investigation, Int. J. of Hydrogen Energy, 2011) 36:6005-6013.
[5] Wenzel, S.E., Fischer, M., Hoffmann, F., Froba, M., Highly Porous Metal-Organic Framework Containing a Novel Organosilicon Linker - A Promising Material for Hydrogen Storage, Inorg. Chem., 2009, 48:6559–6565 6559, DOI: 10.1021/ic900478z
[6] Dinca, M., Dailly, A., Liu, Y., Brown, C.M., Dan. A., Neumann, J.R., Long, Hydrogen Storage in a Microporous Metal-Organic Framework with Exposed Mn2+ Coordination Sites, J. AM. CHEM. SOC., 2006, 128:16876-16883.
[7] Tranchemontagne, D.J., Park, K.S., Furukawa, H., Eckert, J., Knobler, C.B., Yaghi, O.M., Hydrogen Storage in New Metal−Organic Frameworks, J. Phys. Chem., 2012, 116:13143−13151. dx.doi.org/10.1021/jp302356q |
[8] Yuan, S., Kirklin, S., Dorney, B., Liu, D., Yu, L., Nanoporous Polymers Containing Stereocontorted Cores for Hydrogen Storage, Received October 24, 2008; Revised Manuscript Received January 12, 2009.
[9] Dailly, A., Poirier, E., Evaluation of an industrial pilot scale densified MOF-177 adsorbent as an on-board hydrogen storage medium, Received April 6, 2011; Accepted June 14, 2011, DOI: 10.1039/c1ee01426a
[10] Kim, H., Choi, H.R., Byun, J.M., Suk, M.J., Oh, S.T., Kim, Y.D., Synthesis of CNT on a camphene impregnated titanium porous body by thermal chemical vapor deposition, J. Korean Powder Metall. Inst., 2015, 22:122–128.
[11] Han, Y., Park, S., Influence of nickel nanoparticles on hydrogen storage behaviors of MWCNTs, Applied Surface Science, http://dx.doi.org/10.1016/j.apsusc.2016.12.108
[12] Singh, P., Kulkarni, M.V., Gokhale, S.P., Chikkali, S.H., Kulkarni, C.V., Enhancing the hydrogen storage capacity of Pd-functionalized multi-walled carbon nanotubes, Appl. Surf. Sci., 2012, 258:3405–3409.
[13] Das, T., Banerjee, S., Dasgupta, K., Joshi. J.B., V. Sudarsan, Nature of the Pd–CNT interaction in Pd nanoparticles dispersed on multi-walled carbon nanotubes and its implications in hydrogen storage properties, RSC Adv., 2015, 5:41468–41474.
[14] Park, S.J., Lee, S.Y., Hydrogen storage behaviors of platinum-supported multiwalled carbon nanotubes, Int. J. Hydrogen Energy, 2010, 35:13048–13054.
[15] Mortazavi, S.Z., Parvin, P., Reyhani, A., Malekfar, R., Mirershadi, S., Hydrogen storage property of laser induced Pd-nanoparticle decorated multi-walled carbon nanotubes, RSC Adv., 2013, 3:1397–1409.
[16] Cheng, H., Chen, L., Cooper, A.C., Sha, X., Pez, G.P., Hydrogen spillover in the context of hydrogen storage using solid-state materials, Energy Environ. Sci., 2008, 1:338–354.
[17] Kumar, K.V., Monteiro de Castro, M., Martinez-Escandell, M., Molina-Sabio, M., Rodriguez-Reinoso, F., Neural network and principal component analysis for modeling of hydrogen adsorption isotherms on KOH activated pitch-based carbons containing different heteroatoms, Chemical Engineering Journal, 2010, 159:272–279.