[1] Nikolic V.M., Maslovara S.L., Tasic G.S., Brdaric T.P., Lausevic P.Z. and Radak B.B., "Kinetics of hydrogen evolution reaction in alkaline electrolysis on a Ni cathode in the presence of Ni–Co–Mo based ionic activators", Applied Catalysis B,2015, 179: 88-94.
[2] Yan
X. , Huang
S. , Yang
F., Sun
S., Zhang
G., Jiang
B., Zhang
B., Che
S., Yang
W. and Li
Y., "Enhanced catalytic hydrogen evolution reaction performance of highly dispersed Ni2P nanoparticles supported by P-doped porous carbon", Colloids and Surfaces A, 2021, 616: 126308.
[3] Aqeel Ashraf
M., Li
C., Thai Pham
B. and Zhang
D. , "Electrodeposition of Ni–Fe–Mn ternary nanosheets as affordable and efficient electrocatalyst for both hydrogen and oxygen evolution reactions", Int. J. Hydrogen Energy, 2020, 45: 24670-24683.
[4] Elrouby
M., Sadek
M., Mohran
H.S. and Abdel Lateef
H.M., "A highly stable and efficient electrodeposited flowered like structure Ni–Co alloy on steel substrate for electrocatalytic hydrogen evolution reaction in HCl solution",
J. Materials Research and Technology, 2020, 9: 13706-13717.
[5] Yang
W. and Chen
S., "Recent progress in electrode fabrication for electrocatalytic hydrogen evolution reaction: A mini review",
Chemical Engineering J., 2020,
393: 124726.
[6] Shervedani R.K. and Madram A.R., "Kinetics of hydrogen evolution reaction on nanocrystalline electrodeposited Ni62Fe35C3 cathode in alkaline solution by electrochemical impedance spectroscopy", Electrochimica Acta, 2007, 53: 426-433.
[7] Safizadeh F., Ghali E. and Houlachi G., "Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions- A Review",
Int. J. Hydrogen Energy, 2015, 40: 256-274.
[8] Meguro S., Sasaki T., Katagiri H., Habazaki H., Kawashima A., Sasaki T., Asami K. and Hashimoto K., "Electrodeposited Ni-Fe-C Cathodes for Hydrogen Evolution", J. Electrochemical Society, 2000, 47: 3003.
[9] Divisek J., Schmitz H. and Steffen B., "Electrocatalyst materials for hydrogen evolution", Electrochimica Acta, 1994, 39: 1723-1731.
[10] Losiewicz B., Budniok A., Rowinski E., Lagiewka E. and Lasia A., "Effect of heat-treatment on the mechanism and kinetics of the hydrogen evolution reaction on Ni-P+TiO2+Ti electrodes", J. Applied Electrochemistrty, 2004, 34: 507-516.
[11] Sun
T., Cao
J., Dong
J., Du
H., Zhang
H., Chen
J. and Xu
L., "Ordered mesoporous Ni-Co alloys for highly efficient electrocatalytic hydrogen evolution reaction", 2017, 42: 6637-6645.
[12] Anaam H., Ali A.S., Jedidi A., Anjum D.H., Cavallo L. and Takanabe K., "Kinetics on NiZn bimetallic catalysts for hydrogen evolution via selective dehydrogenation of methylcyclohexane to toluene", ACS Catalysis, 2017, 7: 1592‑1600.
[13] Shervedani R.K. and Lasia A., "Studies of the hydrogen evolution reaction on Ni-P electrodes", J. Electrochemical Society, 1997, 144: 511-519.
[14] da Silva M.G.S., Leite C.M., Cordeiro M.L., Mastelaro V.R. and Leite E.R., "One-step synthesis of nickel sulfides and their electrocatalytic activities for hydrogen evolution reaction: a case study of crystalline h-NiS and o‑Ni9S8 nanoparticles", ACS Applied Energy Materials, 2020, 3: 9498-9503.
[15] Li Z.P., Shang J.P., Su C.N., Zhang S.B., Wu M.X. and Guo Y., "Preparation of amorphous NiP-based catalysts for hydrogen evolution reactions, Journal of Fuel Chemistry and Technology", 2018, 46: 473-478.
[16] Vesztergom S., Dutta A., Rahaman M., Kiran K., Montiel I.Z. and Broekmann P., "Hydrogen bubble templated metal foams as efficient catalysts of CO2 electroreduction", Chemical Catalysis Chemistry, 2021, 13: 1039‑1058.
[17] Macdonald J.R., Schoonman J. and Lehner A.P., "Applicability and power of complex nonlinear least squares for the analysis of impedance and admittance data", J. Electroanalytical Chemistry, 1982, 131: 77.
[18] Rausch S. and Wendt H., "Morphology and utilization of smooth hydrogen‐evolving raney nickel cathode coatings and porous sintered‐nickel cathodes", J. Electrochemical Society, 1996, 143: 2852.
[19] Chen L. and Lasia A., "Ni‐Al powder electrocatalyst for hydrogen evolution: effect of heat‐treatment on morphology, composition, and kinetics", J. Electrochemical Society, 1993, 140: 2464.
[20] (a) Los P., Lasia A., Menard H. and L. Brossard, "Impedance studies of porous lanthanum-phosphate-bonded nickel electrodes in concentrated sodium hydroxide solution", J. Electroanalytical Chemistry, 1993, 360: 101.
(b) Jurczakowski R., Hitz C. and Lasia A., "Impedance of porous gold electrodes in the presence of electroactive species", J. Electroanalytical Chemistry, 2005, 582: 85.
[21] Brug G.J., van der Eden A.L.G., Rehbach M.S. and Sluyters J.H., "The analysis of electrode impedances complicated by the presence of a constant phase element", J. Electroanalytical Chemistry, 1984, 176: 275-295.
[22] Brug G.J., Rehbach M.S., Sluyters J.H. and Hemelin A., "The kinetics of the reduction of protons at polycrystalline and monocrystalline gold electrodes", J.Electroanalytical Chemistry and Interfacial Electrochemistry, 1984, 176: 275-295.
[23] Lasia A., Rami A., "Kinetics of hydrogen evolution on nickel electrodes", J. Electroanalytical Chemistry, 1990, 294: 123-141.