[1] Pittock A.B., 2nd ed., Climate change the science, impacts and solutions, CSIRO, 2009.
[2] EG and G Technical Services, Inc. Science Applications International Corporation, 6th ed., Fuel Cell Handbook, US Department of Energy, 2002.
[3] Ghassemi M., Kamvar M. and Steinberger-wilckens R., 1st ed., Fundamentals of heat and fluid flow in high temperature fuel cells, Elsevier, 2020.
[4] Bove R. and Ubertini S., 1th ed., Modeling Solid Oxide Fuel Cells, Methods, Procedures and Technologies, Springer, 2008.
[5] Kupecki J., Papurello D., Lanzini A., Naumovich Y., Motylinski K., Blesznowski M and Santarelli M., “Numerical model of planar anode supported solid oxide fuel cell fed with fuel containing H2S operating in direct internal reforming mode (DIR-SOFC)”, J. Applied Energy, 2018, 230: 1573.
[6] Kim S., Jang I., Kim Ch., Lee H., Song T., Yoon H. and Paik U., “Enhanced reliability of planar-type solid oxide fuel cell stack incorporating leakage gas induction channels”, Int. J. Hydrogen Energy, 2020, 45: 11834.
[7] Hibino T. and Iwahara H., “Simplification of solid oxide fuel cell system using partial oxidation of methane”, Chemistry Letters, 1993, 22: 1131.
[8] Tian Y., Wu P., Zhang X., Guo X. and Ding L., “Performance of a linear array solid oxide fuel cell micro-stack operated in single-chamber conditions” J. Ionics, 2020, 26: 6217.
[9] Kamvar M., Ghassemi M. and Rezaei M., “Effect of catalyst layer configuration on single chamber solid oxide fuel cell performance”, J. Applied Thermal Engineering, 2016, 100: 98.
[10] Kamvar M., Ghassemi M. and Steinberger-Wilckens R., “The numerical investigation of a planar single chamber solid oxide fuel cell performance with a focus on the support types”, Int. J. Hydrogen Energy, 2020, 45: 7077.
[11] Tian Y., Lu Zh., Wang Zh., Wei B., Nie Zh. And Zhai A., “Enhanced performance of a single-chamber solid oxide fuel cell with dual gas supply method”, Ionics, 2019, 25: 1281.
[12] Bedon A., Viricelle J.P., Rieu M., Mascotto S. and Glisenti A., “Single chamber solid oxide ful cells selective electrodes: A real chance with brownmillerite-based nanocomposites” Int. J. Hydrogen Energy, 2021, 46:14735.
[13] Akhtar N., Decent S. P., Loghin D. and Kendall K., “A three dimensional numerical model of a single-chamber solid oxide fuel cell”, Int. J. Hydrogen Energy, 2009, 34: 8645.
[14] Akhtar N., Decent S. P., Loghin D. and Kendall K., “Mixed-reactant, micro-tubular solid oxide fuels: An experimental study”, J. Power Sources, 2009, 193: 39.
[15] Akhtar N. and Kendall K., “Micro-tubular, solid oxide fuel cell stack operated under single-chamber conditions”, Int. J. Hydrogen Energy, 2011, 36: 13083.
[16] Akhtar N., Decent S. P. and Kendall K., “Numerical modelling of methane-powered micro-tubular, single-chamber solid oxide fuel cell”, J. Power Sources, 2010, 195: 7796.
[17] Akhtar N., Decent S. P. and Kendall K., “A parametric analysis of a micro-tubular, single-chamber solid oxide fuel cell (MT-SC-SOFC)”, Int. J. Hydrogen Energy, 2011, 36: 765.
[18] Akhtar N., “Micro-tubular, single-chamber solid oxide fuel cell (MT-SC-SOFC) stacks: Model development”, Chemical Engineering Research and Design, 2012, 90: 814.
[19] Akhtar N., “Modeling of novel porous inserted micro-tubular, single-chamber solid oxide fuel cells (MT-SC-SOFC)”, Chemical Engineering Journal, 2012, 179: 277.
[20] Kamvar M. and Ghassemi M., “Performance analysis of coplanar single chamber solid oxide fuel cell with oxygen-methane-nitrogen mixture under steady state conditions”, J. Modares Mechanical Engineering, 2017, 17: 31
[21] Guo Y.M., Bessaa M., Aquado S., Cesar Steil M., Rembelski D., Rieu M., et al., “An all porous solid ocide fuel cell (SOFC): a bridging technology between dual and single chamber SOFCs”, Energy Environ. Sci., 2013, 6: 2119.
[22] Guo Y.M., Largiller G., Guizard C., Tardivat C. and Farrusseng D., “Coke-free operation of an all porous solid oxide fuel cell (AP-SOFC) used as an O2 supply device”, J Materials Chemistry A, 2015, 3: 2684.
[23] Xu H., Chen B., Tan P., Cai W., He W., et al., “Modelling of all porous solid oxide fuel cells”, Applied Energy, 2018, 219: 105.
[24] Xu H., Chen B., Tan P., Xuan J., Mercedes M., et al., “Modelling of all-porous solid oxide fuel cells with a focus on the electrolyte porosity design”, Applied Energy, 2019, 235: 602.
[25] Xu H., Chen B., Tan P., Zhang Y., He Q., et al., “The thermal effects of all-porous solid oxide fuel cells”, J. Power Sources, 2019, 440: 227102.
[26] Kamlungsua K., Su P. C. and Chan S. H., “Hydrogen generation using solid oxide electrolysis cells”, Fuel cells, 2020, 6: 644.
[27] M. Kamvar, “Comparative numerical study of co- and counter-flow configurations of an all-porous solid oxide fuel cell”, Iranian J of Hydrogen & Fuel Cell, 2021, 2: 77.
[28] Timurkutluk B., Celik S., Timurkutluk C., Mat M.D. and Kaplan Y., “Novel electrolytes for solid oxide fuel cells with improved mechanical properties”, Int. J. Hydrogen Energy, 2012, 37: 13499.
[29] Nield D.A. and Bejan A., 3rd ed., Convection in Porous Media, Springer, 2006.
[30] Batchelor G.K., 1st ed., An Introduction To Fluid Dynamics, Cambridge University Press, 2000.
[31] Taylor R. and Krishna R., 1th ed., Multicomponent mass transfer, John Willey & Sons, Inc., 1993.
[32] Cengel Y.A. and Ghajar A. J., 5th ed., Heat and mass transfer fundamentals & applications, MC Graw Hill, 2014.