Performance verification of a laboratory scale hydrogen/oxygen combustion chamber

Document Type : Research Paper

Authors

1 Malek Ashtar University of Technology, Tehran, Iran

2 Department of chemistry and chemical engineering, Malek Ashtar University of technology, Tehran, Iran

Abstract

Liquid propellant missiles are commonly applied to launch satellites that must be located in  upper orbits. These systems normally use hydrogen and oxygen propellants that are non-hypergolic mixtures. In this study, the test results of a designed hydrogen/oxygen engine were evaluated, and a designed spark igniter was successfully used to start the engine. Seven hot tests were carried out to determine the performance of the engine. The effect of oxygen to fuel ratio (O/F ratio) at a constant combustion chamber pressure (800 kPa) showed that the maximum value of the specific impulse (Isp) and characteristic velocity (C*) occurs at an O/F ratio of about 2.8. Experimental tests at the constant O/F ratio of 2.8 showed that performance parameters, such as Isp and C*, were enhanced when the chamber pressure was increased. However, the trend was sluggish at pressures higher than 800 kPa.

Keywords

Main Subjects


  1. Thakre, P. Rocket propulsion: Basic concepts and introduction. Encyclopedia Aerosp. Eng., John Wiley & Sons, Ltd., 2010. doi.org/10.1002/9780470686652.eae100.
  2. Karmarkar, K. Rocket. Def. Sci. J.,  2013, 2(4), 218-221. doi.org/10.14429/dsj.2.3448 .
  3. Emdee, J.L. Liquid propulsion: Systems engineering, design trades, and testing. Encyclopedia Aerosp. Eng., John Wiley & Sons, Ltd., 2010. doi.org/10.1002/9780470686652.eae111.
  4. Sunakawa, H.; Okita, K.; Tamura, T.; Ogawara, A.; Mitsuhashi, K.; Kobayashi, S.; Kurosu, A.; Onga, T. & Mizuno, T. Robust and optimized design for liquid rocket engine. Am. Inst. Aeronaut. Astronaut. , 2009, 5137. doi.org/ 10.2514/6.2009-5137.
  5. Gohardani, A.S.; Stanojev, J.; Demairé, A.; Anflo, K.; Persson, M.; Wingborg, N. & Nilsson, C. Green space propulsion: Opportunities and prospects. Prog. Aerosp. Sci., 2014, 71, 128-149. doi.org/10.1016/j.paerosci.2014.08.001.
  6. Maas, U. & Warnatz, J. Ignition processes in hydrogen-oxygen mixtures. Combust. Flame, 1988, 74(1), 53-69. doi.org/10.1016/0010-2180(88)90086-7.
  7. Song, Y.; Yu, N.; Zhang, G.; Ma, B.; Zhou, W. & Huang, X. Investigation of novel hydrogen/ oxygen thruster for orbital maneuver in space station. Chinese J. Aeronaut., 2005, 18(4), 289-294. doi.org/10.1016/S1000-9361(11)60247-1.
  8. Robinson, J.W.; Rhodes, R.E. & Henderson, E.M. Mostly-reusable LOX/H2 space transportation concept enabled through advanced technologies. Am. Inst. Aeronaut. Astronaut., 2014, 3650. doi.org/10.2514/6.2014-3650.
  9. Surmacz, P. Green rocket propulsion research and development at the institute of aviation: problems and perspectives. . int j. hydrogen energy, 2016, 42(39). doi.org/10.5604/12314005.1213534
  10. Lidor, A.; Weihs, D. & Sher, E. Theoretical analysis of the explosion limits of hydrogen-oxygen system. Am. Inst. Aeronaut. Astronaut., 2017, 0839. doi.org/10.2514/6.2017-0839.
  11. Cecere, D.; Giacomazzi, E. & Ingenito, A. A review on hydrogen industrial aerospace applications. int j. hydrogen energy, 2014, 39(20). doi.org/10.1016/j.ijhydene.2014.04.126.
  12. P etrescu, R.V.V.; Machín, A.; Fontánezc, K.; Arango, J.C.; Márquezc, F.M. & Petrescua, l. I.T. Hydrogen for aircraft power and propulsion. int j. hydrogen energy, 2020, 45(41). doi.org/10.1016/j.ijhydene.2020.05.253.
  13. Cannon, J.L. Liquid propulsion: Propellant feed system design. Encyclopedia Aerosp. Eng., John Wiley & Sons, Ltd., 2010. doi.org/10.1002/9780470686652.eae110.
  14. Kim, E. S.; Emdee, J.L. & Cohn, R.K. Liquid propulsion: Historical overview, fundamentals, and classifications of liquid rocket engines. Encyclopedia Aerosp. Eng., John Wiley & Sons, Ltd., 2010. doi.org/10.1002/9780470686652.eae107.
  15. Cai, G.; Fang, J.; Xu, X. & Liu, M. Performance prediction and optimization for liquid rocket engine nozzle. Aerosp. Sci. Technol., 2007, 11(2-3), 155-162. doi.org/10.1016/j.ast.2006.07.002.
  16. Frey, M.; Aichner, T.; Görgen, J.; Ivancic, B.; Kniesner, B. & Knab, O. Modeling of rocket combustion devices. Am. Inst. Aeronaut. Astronaut., 2010, 4329. doi.org/10.2514/6.2010-4329.
  17. Börner, M.; Manfletti, C.; Hardi, J.; Suslov, D.; Oschwald, M. & Kroupa, G. Comparison of laser ignition and torch ignition in a subscale rocket combustor. Am. Inst. Aeronaut. Astronaut., 2018, 4946. doi.org/10.2514/6.2018-4946.
  18. Armbruster, W.; Hardi, J.S.; Suslov, D.; Oschwald, M. Injector-driven flame dynamics in a high-pressure multi-element oxygen-hydrogen rocket thrust chamber, Journal of propulsion and power, 2019, 35(3). doi.org/10.2514/1.B37406.
  19. Thompson, B.F.; Strack, D.F. & Mungas, G. Determining electrical ignition characteristics of a gas propulsion system. J. Spacecraft Rockets, 2016, 53(5). doi.org/10.2514/1.A33468.
  20. Brieschenk, S.; Pontalier, Q.; Duffaut, A.; Denman, Z.J.; Veeraragavan, A.; Wheatley, V. & Smart, M. Characterization of a spark ignition system for flameholding cavities. Am. Inst. Aeronaut. Astronaut., 2014, 2242. doi.org/10.2514/6.2014-2242.
  21. Whitmore, S.A.; Inkley, N.R.; Merkley, D.P. & Judson, M.I. Development of a power-efficient, restart-capable arc igniter for hybrid rockets. J. Propul. Pow., 2015, 31(6), 1739. doi.org/10.2514/1.B35595.
  22. Kim, J.; Sforzo, B.; Seitzman, J. & Jagoda, J. High energy spark discharges for ignition. Am. Inst. Aeronaut. Astronaut., 2012, 4172. doi.org/10.2514/6.2012-4172.
  23. Gill, G.S. & Nurick, W.H., Liquid rocket engine injectors, NASA-SP-8089, NASA Lewis Research Center, Cleveland, OH, USA, 1976.
  24. Mayer, W.; Schik, A.; Schaffler, M. & Tamura, H. Injection and mixing processes in high-pressure liquid oxygen/gaseous hydrogen rocket combustors. J. Propul. Pow., 2000, 16(5), 823-828. doi.org/10.2514/2.5647.
  25. Yang, V.; Habiballah, M.; Hulka, J. & Popp, M., Liquid rocket thrust chambers: Aspects of modeling, analysis, and design, Am. Inst. Aeronaut. Astronaut., Inc., Virginia, 2004.
  26. Mayer, W. & Tamura, H. Propellant injection in a liquid oxygen/gaseous hydrogen rocket engine. J. Propul. Pow., 1996, 12(6), 1137-1147. doi.org/10.2514/3.24154.
  27. Mayer, W.O.H.; Schik, A.H.A; Vielle, B.; Chauveau, C.; Gokalp, I.; Talley, D.G. & Woodward, R.D. Atomization and breakup of cryogenic propellants under high pressure subcritical and supercritical conditions. J. Propul. Pow., 1998, 14(5), 835-842. doi.org/10.2514/2.5348.
  28. Mayer, W.O.H. Coaxial atomization of a round liquid jet in a high speed gas stream: A phenomenological study. Exp. Fluids, 1994, 16, 401-410. doi.org/10.1007/BF00202065.
  29. Langel, G.; Mattstedt, T.; Luger, P. & Ziegenhagen, S. Test verification of the cryogenic Vinci thrust chamber. Am. Inst. Aeronaut. Astronaut., 2006, 4903. doi.org/10.2514/6.2006-4903.
  30. Kumar, A. & Anjaneyulu, L. Emerging trends in instrumentation in rocket motor testing. Def. Sci. J.,  2015.,65(1), 63-69. doi.org/10.14429/dsj.65.7949.
  31. Venugopal, S.; Ramanujachari, V. & Rajesh, K. Design and testing of lab-scale red fuming nitric acid/hydroxyl-terminated polybutadiene hybrid rocket motor for studying regression rate. Def. Sci. J., 2011,  61(6), 515-522. doi.org/10.14429/dsj.61.873.
  32. Leahy, J.C.; Hanna S.G.; Malchi, J.Y. & Kim, E.S. Liquid propulsion: Engine production and operation. Encyclopedia Aerosp. Eng., John Wiley & Sons, Ltd., 2010. doi.org/10.1002/9780470686652.eae112.
  33. Krishnamachary, S.; Mohan, S.; Kulkarni, S. G.; Jayaraman, D.; Rao, M.; Singh, L. & Prasad, S. Propellant grade hydrazine in mono/bi-propellant thrusters: preparation and performance evaluation. Def. Sci. J.,  2015, 65(1), 31-38. doi.org/10.14429/dsj.65.7986.

34. Galeev, A.G.  Review of engineering solutions applicable in tests of liquid rocket engines and propulsion systems employing hydrogen as a fuel and relevant safety assurance aspects, int j. hydrogen energy,2017, 42(39).  doi.org/10.1016/j.ijhydene.2017.06.242.

  1. Rodchenko, V.V.;   Galeev, A.G.;  Popov, B.B. & Galeev, A.V. Study of security systems of oxygen-hydrogen propulsion plant test on the stand, alternative energy and ecology,2015. doi.org/10.15518/isjaee.2015.20.005.
  2. Hagemann, G.; Immich. H.; Nguyen., T.V. & Dumnov, G.E. Advanced rocket nozzles. J. Propul. Pow., 1998, 14(5). 620-634. doi.org/10.2514/2.5354.
  3. Twardy, H. On a variable-thrust hydrogen-oxygen rocket engine. Acta Astronaut., 1975, 2(7-8), 627-647. doi.org/10.1016/0094.5765(75)90006-5.
  4. Sternfeld, H.J.; Haidn, O.J.; Potier, B.; Vuillermoz, P. & Popp, M. International cooperation on hydrogen/oxygen high pressure combustion. Acta Astronaut., 1995, 37, 487-496. doi.org/10.1016/0094-5765(95)00075-B.
  5. Kirner, E.; Thelemann, D. & Wolf, D. Development status of the Vulcain thrust chamber. Acta Astronaut., 1993, 29(4), 271-282. doi.org/10.1016/0094-5765(93)90140-R.
  6. Chiaverini, M.J.; Malecki, M.J.; Sauer, J.A.; Knuth, W.H.; Gramer, D.J. & Majdalani, J. Vortex thrust chamber testing and analysis for O2/H2 propulsion applications. Am. Inst. Aeronaut. Astronaut., 2003, 4473. doi.org/10.2514/6.2003-4473.

41 Yanagawa, K.; Fujitat, T.; Miyajima, H. & Kishimoto, K. High-altitude simulation tests of the LOX/LH2 engine LE-5. J. Propul. Pow., 1985, 1(3), 180-186. doi.org/10.2514/3.22779.

  1. Haberbusch, M.S.; Nguyen, C.T.; Skaff, A.F. & Lobo, S. Modeling RL10 thrust increase with densified LH2 and LOX propellants. Am. Inst. Aeronaut. Astronaut., 2003, 4485. doi.org/10.2514/6.2003-4485.
  2. Elam, S.K. Subscale LOX/hydrogen testing with a modular chamber and a swirl coaxial injector. Am. Inst. Aeronaut. Astronaut., 1991, 1874. doi.org/10.2514/6.1991-1874.
  3. Kayama, A.; Watanabe, A.; Shibato, Y. & Godai, T. Small cryogenic propulsion unit for upper stage application. Acta Astronaut., 1985, 12(3), 163-170. doi.org/10.1016/0094-5765(85)90057-8.
  4. Marshall, W.; Pal, S.; Woodward, R. & Santoro, R. Benchmark wall heat flux data for a GO2/GH2 single element combustor. Am. Inst. Aeronaut. Astronaut., 2005, 3572. doi.org/10.2514/6.2005-3572.
  5. Tucker, P.K.; Menon, S.; Merkle, C.L.; Oefelein, J.C. & Yang, V. Validation of high-fidelity CFD simulations for rocket injector design. Am. Inst. Aeronaut. Astronaut., 2008, 5226. doi.org/10.2514/6.2008-5226.
  6. Sozer, E.; Vaidyanathan, A.; Segal, C. & Shyy, W. Computational assessment of gaseous reacting flows in single element injector. Am. Inst. Aeronaut. Astronaut., 2009, 449. doi.org/10.2514/6.2009-449.
  7. Tucker, P.K.; Menon, S.; Merkle, C.L.; Oefelein, J.C. & Yang, V. An approach to improved credibility of CFD simulations for rocket injector design. Am. Inst. Aeronaut. Astronaut., 2007, 5572. doi.org/10.2514/6.2007-5572.
  8. West, J.; Lin, J.; Tucker, K. & Chenoweth, J. Steady state combustion CFD analysis of local heat transfer for liquid oxygen/gaseous hydrogen injectors. 53rd JANNAF Propulsion Meeting/2nd Liquid Propulsion Subcommittee Meeting, December 5-8, Monterey, CA, USA, 2005.
  9. Meinhardt, D.; Brewster, G.; Christofferson, S. & Wucherer, E. Development and testing of new, man-based monopropellants in small rocket thrusters. Am. Inst. Aeronaut. Astronaut., 1998, 4006. doi.org/10.2514/6.1998-4006.
  10. Smith, T.A.; Pavli, A.J. & Kacynski, K.J. Comparison of theoretical and experimental thrust performance of a 1030:1 area ratio rocket nozzle at a chamber pressure of 2413 kN/m2 (350 psia). Am. Inst. Aeronaut. Astronaut., 1987, 2069. doi.org/10.2514/6.1987-2069.
  11. Sutton, G.P. & Biblarz, O. Rocket propulsion elements. John Wiley & Sons, Inc., New York, 2010.