[1] Wilberforce T, Alaswad A, Palumbo A, Dassisti M, Olabi A-G. Advances in stationary and portable fuel cell applications. International journal of hydrogen energy 2016;41:16509-22.
[2] Rouss V, Candusso D, Charon W. Mechanical behaviour of a fuel cell stack under vibrating conditions linked to aircraft applications part II: Three-dimensional modelling. International Journal of Hydrogen Energy 2008;33:6281-8.
[3] Rouss V, Lesage P, Bégot S, Candusso D, Charon W, Harel F, et al. Mechanical behaviour of a fuel cell stack under vibrating conditions linked to aircraft applications part I: Experimental. International Journal of Hydrogen Energy 2008;33:6755-65.
[4] Rajalakshmi N, Pandian S, Dhathathreyan K. Vibration tests on a PEM fuel cell stack usable in transportation application. International journal of hydrogen energy 2009;34:3833-7.
[5] Hou Y, Zhou W, Shen C. Experimental investigation of gas-tightness and electrical insulation of fuel cell stack under strengthened road vibrating conditions. International journal of hydrogen energy 2011;36:13763-8.
[6] Diloyan G, Sobel M, Das K, Hutapea P. Effect of mechanical vibration on platinum particle agglomeration and growth in Polymer Electrolyte Membrane Fuel Cell catalyst layers. Journal of Power Sources 2012;214:59-67.
[7] Deshpande J, Dey T, Ghosh PC. Effect of vibrations on performance of polymer electrolyte membrane fuel cells. Energy Procedia 2014;54:756-62.
[8] Wu CW, Liu B, Wei MY, Zhang W. Mechanical response of a large fuel cell stack to impact: A numerical analysis. Fuel Cells 2015;15:344-51.
[9] Imen S, Shakeri M. Reliability evaluation of an open‐cathode PEMFC at operating state and longtime vibration by mechanical loads. Fuel Cells 2016;16:126-34.
[10] Wang X, Wang S, Chen S, Zhu T, Xie X, Mao Z. Dynamic response of proton exchange membrane fuel cell under mechanical vibration. International Journal Of Hydrogen Energy 2016;41:16287-95.
[11] Liu B, Wei M, Zhang W, Wu C. Effect of impact acceleration on clamping force design of fuel cell stack. Journal of Power Sources 2016;303:118-25.
[12] Hao D, Hou Y, Shen J, Ma L. Effect of Road-Induced Vibration on Gas-Tightness of Vehicular Fuel Cell Stack. SAE Technical Paper; 2016.
[13] Al-Baghdadi MAS. A parametric study of the natural vibration and mode shapes of PEM fuel cell stacks. International Journal of Energy and Environment 2016;7:1.
[14] Ahn S, Koh H, Lee J, Park J. Dependence between the vibration characteristics of the proton exchange membrane fuel cell and the stack structural feature. Environmental research 2019;173:48-53.
[15] Mevel L, Goursat M, Basseville M, Benveniste A. Subspace-based modal identification and monitoring of large structures: a scilab toolbox. IFAC Proceedings Volumes 2003;36:1363-8.
[16] Abaqus V. 6.14 Documentation. Dassault Systemes Simulia Corporation 2014;651:6.2.
[17] Barzegari MM, Dardel M, Ramiar A, Alizadeh E. An investigation of temperature effect on performance of dead-end cascade H2/O2 PEMFC stack with integrated humidifier and separator. International Journal of Hydrogen Energy 2016;41:3136-46.
[18] Baroutaji A, Carton J, Sajjia M, Olabi A. Materials in PEM fuel cells, Reference Module in Materials Science and Materials Engineering. Elsevier; 2016.
[19] Alizadeh E, Barzegari M, Momenifar M, Ghadimi M, Saadat S. Investigation of contact pressure distribution over the active area of PEM fuel cell stack. International Journal of Hydrogen Energy 2016;41:3062-71.
[20] Barzegari MM, Dardel M, Alizadeh E, Ramiar A. Dynamic modeling and validation studies of dead-end cascade H2/O2 PEM fuel cell stack with integrated humidifier and separator. Applied energy 2016;177:298-308.
[21] Blau PJ. Friction science and technology: from concepts to applications: CRC press; 2008.
[22] Cohen P, Cohen J, Teresi J, Marchi M, Velez CN. Problems in the measurement of latent variables in structural equations causal models. Applied Psychological Measurement 1990;14:183-96.