[1] W.R. Chang, J.J. Hwang, F.B. Weng, S.H. Chan, 2007. “Effect of clamping pressure on the performance of a PEM fuel cell”, Journal of Power Sources, 166, 149–154.
[2] Woo-kum Lee, Chien-Hsien Ho, J.W. Van Zee, Mahesh Murthy, 1999. “The effects of compression and GDLs on the performance of a PEM fuel cell”, Journal of Power Sources, 84, 45–51.
[3] Xiu Qing Xing, KahWai Lum, Hee Joo Poh, Yan LingWu. 2010. “Optimization of assembly clamping pressure on performance of proton-exchange membrane fuel cells”. Journal of Power Sources, 195, 62–68.
[4] Sung-Dae Yim, Byung-Ju Kim, Young-Jun Sohn, Young-Gi Yoon, Gu-Gon Park, Won-Yong Lee, Chang-Soo Kim, Yong Chai Kim. 2010. “The influence of stack clamping pressure on the performance of PEM fuel cell stack”. Current Applied Physics, 10, S59–S61.
[5] Jiabin Ge, Andrew Higier, Hongtan Liu. 2006. “Effect of GDL compression on PEM fuel cell performance”. Journal of Power Sources, 159, 922–927.
[6] Xinmin Lai, Dong’an Liua, Linfa Penga, Jun Ni. 2008. “A mechanical–electrical finite element method model for predicting contact resistance between bipolar plate and GDL in PEM fuel cells”. Journal of Power Sources, 182, 153–159.
[7] Shuo-Jen Lee, Chen-De Hsu, Ching-Han Huang. 2005. “Analyses of the fuel cell stack assembly pressure”. Journal of Power Sources, 145, 353–361.
[8] Christophe Carral, Patrice Meґleґ. 2014. “A numerical analysis of PEMFC stack assembly through a 3D finite element model”. International journal of hydrogen energy, 39, 4516 e4530.
[9] Alizadeh E, Barzegari MM, Momenifar M, Ghadimi M, Saadat SHM, 2016. “Investigation of contact pressure distribution over the active area of PEM fuel cell stack”, International Journal of Hydrogen Energy, 41, 3062-71.
[10] Alizadeh, E., Ghadimi, M., Barzegari, M. M., Momenifar, M., & Saadat, S. H. M. 2017. Development of contact pressure distribution of PEM fuel cell’s MEA using novel clamping mechanism. Energy, 131, 92-97.
[11] Barzegari, M. M., Ghadimi, M., Habibnia, M., Momenifar, M., & Mohammadi, K. 2020. Developed endplate geometry for uniform contact pressure distribution over PEMFC active area. Iranian Journal of Hydrogen & Fuel Cell, 7(1), 1-12.
[12] Liu, J., Tan, J., Yang, W., Li, Y., & Wang, C. 2021. Better electrochemical performance of PEMFC under a novel pneumatic clamping mechanism. Energy, 229, 120796.
[13] Yongbo Qiu, Peng Wu, Tianwei Miao, Jinqiao Liang, Kui Jiao, Tao Li, Jiewei Lin, Junhong Zhang, 2020 . “An Intelligent Approach for contact pressure optimization of PEM fuel cell GDLs”, applied sciences, 10, 4194.
[14] Jiewei Lin, Peng Wu, Huwei Dai, Yongbo Qiu, Junhong Zhang, 2020 . “Intelligent optimization of clamping design of PEM fuel cell stack for high consistency and uniformity of contact pressure”, contact pressure International Journal of Green Energy, 10, 1080.
[15] Lin, J., Wu, P., Dai, H., Qiu, Y., & Zhang, J. 2022. Intelligent optimization of clamping design of PEM fuel cell stack for high consistency and uniformity of contact pressure. International Journal of Green Energy, 19(1), 95-108.