[1] I. Gibson, D. Rosen, and B. Stucker,(BOOK)Directed Energy Deposition Processes. In: Additive Manufacturing Technologies. 2015.
[2] A. Jabbari and K. Abrinia, “Developing thixo-extrusion process for additive manufacturing of metals in semi-solid state,” J. Manuf. Process., vol. 35, no. November 2017, pp. 664–671, 2018, doi: 10.1016/j.jmapro.2018.08.031.
[3] A. Jabbari and K. Abrinia, “A metal additive manufacturing method: semi-solid metal extrusion and deposition,” Int. J. Adv. Manuf. Technol., vol. 94, no. 9–12, pp. 3819–3828, 2018, doi: 10.1007/ s00170-017-1058-7.
[4] C. Parra-Cabrera, C. Achille, S. Kuhn, and R. Ameloot, “3D printing in chemical engineering and catalytic technology: Structured catalysts, mixers and reactors,” Chemical Society Reviews, vol. 47, no. 1. Royal Society of Chemistry, pp. 209–230, 2018. doi: 10.1039/c7cs00631d.
[5] O. H. Laguna, P. F. Lietor, F. J. I. Godino, and F. A. Corpas-Iglesias, “A review on additive manufacturing and materials for catalytic applications: Milestones, key concepts, advances and perspectives,” Materials and Design, vol. 208. The Authors, p. 180 109927, 2021. doi: 10.1016/j.matdes.2021.109927.
[6] G. Scotti et al., “Laser additive manufacturing of stainless steel micro fuel cells,” J. Power Sources, vol. 272, pp. 356–361, 2014, doi: 10.1016/j.jpowsour.2014.08.096.
[7] S. A. Rasaki, C. Liu, C. Lao, H. Zhang, and Z. Chen, “The innovative contribution of additive manufacturing towards revolutionizing fuel cell fabrication for clean energy generation: A comprehensive review,” Renewable and Sustainable Energy Reviews, vol. 148, no. January. Elsevier Ltd, p. 111369, 2021. doi: 10.1016/j.rser.2021.111369.
[8] A. Hornйs, A. Pesce, L. Hernбndez-Afonso, A. Morata, M. Torrell, and A. Tarancon, “3D Printing of Fuel Cells and Electrolyzers,” 3D Print. Energy Appl., pp. 273–306, 2021, doi: 10.1002/9781119560807.ch11.
[9] L. Wei et al., “A novel fabrication of yttria-stabilized-zirconia dense electrolyte for solid oxide fuel cells by 3D printing technique,” Int. J. Hydrogen Energy, vol. 44, no. 12, pp. 6182–6191, 2019, doi: 10.1016/j.ijhydene.2019.01.071.
[10] P. He, C. Sun, and Y. Wang, “Material distortion in laser-based additive manufacturing of fuel cell component: Three-dimensional numerical analysis,” Addit. Manuf., vol. 46, no. July, p. 102188, 2021, doi: 10.1016/j.addma.2021.102188.
[11] G. Scotti, P. Kanninen, V. P. Matilainen, A. Salminen, and T. Kallio, “Stainless steel micro fuel cells with enclosed channels by laser additive manufacturing,” Energy, vol. 106, pp. 475–481, 2016, doi: 10.1016/j.energy.2016.03.086.
[12] M. C. B. Agudelo, M. Hampe, T. Reiber, and E. Abele, “Investigation of porous metal-based 3D-printed anode GDLs for tubular high temperature proton exchange membrane fuel cells,” Materials (Basel)., vol. 13, no. 9, pp. 1–12, 2020, doi: 10.3390/ma13092096.
[13] Y. Lyu, F. Wang, D. Wang, and Z. Jin, “Alternative preparation methods of thin films for solid oxide fuel cells: review,” Mater. Technol., vol. 35, no. 4, pp. 212–227, 2020, doi: 10.1080/10667857.2019.1674478.
[14] G. Pasternak, J. Greenman, and I. Ieropoulos, “Comprehensive Study on Ceramic Membranes for Low-Cost Microbial Fuel Cells,” ChemSusChem, vol. 9, no. 1, pp. 88–96, 2016, doi: 10.1002/ cssc.201501320.
[15] P. Dudek, A. Raźniak, and B. Lis, “Dudek, Piotr; Raźniak, Andrzej; Lis, Bartłomiej; Filipowicz, M.; Dudek, M.; Olkuski, T.; Styszko, K. (2016). Rapid prototyping methods for the manufacture of fuel cells. E3S Web of Conferences, 10(), 00127–. doi:10.1051/e3sconf/20161000127,” E3S Web Conf., vol. 10, pp. 1–8, 2016, doi: 10.1051/e3sconf/20161000127.
[16] D. A. Komissarenko et al., “DLP 3D printing of scandia-stabilized zirconia ceramics,” J. Eur. Ceram. Soc., vol. 41, no. 1, pp. 684–690, 2021, doi: 10.1016/j.jeurceramsoc.2020.09.010.
[17] M. Peng et al., “3D Printed Mechanically Robust Graphene/CNT Electrodes for Highly Efficient Overall Water Splitting,” Adv. Mater., vol. 32, no. 23, pp. 1–8, 2020, doi: 10.1002/adma.201908201.
[18] J. Hack, “Multiscale Characterisation of Polymer Electrolyte Fuel Cells,” 2020.
[19] J. I. S. Cho et al., “Capillaries for water management in polymer electrolyte membrane fuel cells,” 181
Int. J. Hydrogen Energy, vol. 43, no. 48, pp. 21949– 21958, 2018, doi: 10.1016/j.ijhydene.2018.10.030.