[1] Zhu, Y., Liu, Y., Huang, Y., Li, R., & Wang, Y., Two‐ Dimensional Nanomaterials for Flexible Supercapacitors, Advanced Materials Interfaces, 2018, 5(23), 1801146. https://doi.org/10.1002/admi.201801146
[2] Gharibi, H., Mirzaie, R. A., Shams, E., Zhiani, M., & Khairmand, M. (2005). Preparation of platinum electrocatalysts using carbon supports for oxygen reduction at a gas-diffusion electrode, Journal of Power Sources, 2005, 139(1-2), 61-66. https://doi. org/10.1016/j.jpowsour.2004.06.075
[3] Gharibi, H., Zhiani, M., Entezami, A. A., Mirzaie, R. A., Kheirmand, M., & Kakaei, K., Study of polyaniline doped with trifluoromethane sulfonic acid in gas-diffusion electrodes for proton-exchange membrane fuel cells, Journal of Power Sources, 2006, 155(2), 138-144. https://doi.org/10.1016/j.jpowsour.2005.05.016
[4] Grandi, M., Rohde, S., Liu, D. J., Gollas, B., & Hacker, V., Recent advancements in high performance polymer electrolyte fuel cell electrode fabrication – Novel materials and manufacturing processes, Journal of Power Sources, 2023, 562, 232734. https://doi. org/10.1016/j.jpowsour.2023.232734
Yoon, Y.-G., Park, G.-G., Yang, T.-H., Han, J.-N., ]5[Lee, W.-Y., & Kim, C.-S., Effect of pore structure of catalyst layer in a PEMFC on its performance, International Journal of Hydrogen Energy, 2003, 28, 657- 662. https://doi.org/10.1016/S0360-3199(02)00156-8
[6] Curtin, D. E., Lousenberg, R. D., Henry, T. J., Tangeman, P. C., & Tisack, M. E., Advanced materials for improved PEMFC performance and life, Journal of Power Sources, 2004, 131, 41-48. https://doi. org/10.1016/j.jpowsour.2004.01.023
[7] Scholta, J., Escher, G., Zhang, W., Kьppers, L., Jörissen, L., & Lehnert, W., Investigation on the influence of channel geometries on PEMFC performance, 106
[8] Jiao, K., & Li, X., Water transport in polymer electrolyte membrane fuel cells, Progress in Energy and Combustion Science,2011, 37(3), 221-291. https:// doi.org/10.1016/j.pecs.2010.06.002
[9] Duan, Y., Liu, H., Zhang, W., Khotseng, L., Xu, Q., & Su, H., Materials, components, assembly and performance of flexible polymer electrolyte membrane fuel cell: A review. Journal of Power Sources, 2023, 555, 232369. https://doi.org/10.1016/j.jpowsour.2022.232369
[10] Yingji, W., Ghalkhani, M., Ashrafzadeh Afshar, E., Karimi, F., Changlei, X., Quyet V. L., Vasseghian, Y., Recent progress in Biomass-derived nanoelectrocatalysts for the sustainable energy development. Fuel, 2022, 323,124349. https://doi.org/10.1016/j. fuel.2022.124349
[11] Moeini, B., Ghalkhani, M., Avval, T. G., Linford, M. R., Abdullah Mirzaie, R., A Nickel Sublayer: An Improvement in the Electrochemical Performance of Platinum-Based Electrocatalysts as Anodes in Glucose Alkaline Fuel Cells. Iranian Journal of Catalysis, 2021, 11(1), 77-87.
[12] Sohrabi, S., Ghalkhani, M., Dehghanpour, S., The Electrocatalytic Stability Investigation of a Proton Manager MOF for the Oxygen Reduction Reaction in Acidic Media. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29 (2), 528-534. https://doi.org/10.1007/s10904-018-1025-2
[13] Du, C. Y., Yin, G. P., Cheng, X. Q., & Shi, P. F., Parametric study of a novel cathode catalyst layer in proton exchange membrane fuel cells. Journal of Power Sources, 2006, 160(1), 224-231. https://doi. org/10.1016/j.jpowsour.2006.01.041
[14] Matloobi, R., Abdullah Mirzaie, R., & Anaraki Firooz, A., Achievement of a novel organometallic electrocatalyst based on nickel and poly para-aminophenol with excellent oxygen reduction reaction activity: Promoting the commercialization of low temperature fuel cells, Sustainable Energy Technologies and Assessments, 2022, 51, 101988. https://doi. org/10.1016/j.seta.2022.101988
[15] Sun, Y., Polani, S., Luo, F., Ott, S., Strasser, P., & Dionigi, F., Advancements in cathode catalyst and cathode layer design for proton exchange membrane fuel cells, Nature Communications, 2021, 12, 5984. https://doi.org/10.1038/s41467-021-25911-x
[16] Zhao, J., Liu, H. & Li, X. Structure, Property, and Performance of Catalyst Layers in Proton Exchange Membrane Fuel Cells. Electrochem. Energy Rev., 2023, 6, 13. https://doi.org/10.1007/s41918- 022-00175-1
[17] Qiao, Z., Hwang, S., Li, X., Wang, C., Samarakoon, W., Karakalos, S., Li, D., Chen, M., He, Y., Wang, M., Liu, Z., Wang, G., Zhou, H., Feng, Z., Su, D., Spendelow, J. S., & Wu, G., 3D porous graphitic nanocarbon for enhancing the performance and durability of Pt catalysts: a balance between graphitization and hierarchical porosity, Energy & Environmental Science, 2019, 12(9), 2830-2841. https://doi. org/10.1039/C9EE01899A
[18] Choi, J., Lee, Y. J., Park, D., Jeong, H., Shin, S., Yun, H., Lim, J., Han, J., Kim, E. J., Jeon, S. S., Jung, Y., Lee, H., & Kim, B. J., Highly durable fuel cell catalysts using crosslinkable block copolymer-based carbon supports with ultralow Pt loadings, Energy & Environmental Science, 2020, 13(12), 4921-4929. https://doi.org/10.1039/D0EE01095B
[19] Wilson, M. S., & Gottesfeld, S., Thin-film catalyst layers for polymer electrolyte fuel cell electrodes, Journal of Applied Electrochemistry, 1992, 22, 1-7. https://doi.org/10.1007/BF01093004
[20] Gulzow, E., & Kaz, T., New results of PEFC 107 electrodes produced by the DLR dry preparation technique, Journal of Power Sources, 2002, 106, 122-125. https://doi.org/10.1016/S0378-7753(01)01030-8
[21] Cheng, X., Yi, B., Han, M., Zhang, J., Qiao, Y., & Yu, J., Investigation of platinum utilization and morphology in catalyst layer of polymer electrolyte fuel cells, Journal of Power Sources, 1999, 79, 75-81. https://doi.org/10.1016/S0378-7753(99)00046-4
[22] Fischer, A., Jindra, J., & Wendt, H., Porosity and catalyst utilization of thin layer cathodes in air operated PEM-fuel cells, Journal of Applied Electrochemistry, 1998, 28, 277-282. https://doi. org/10.1023/A:1003259531775
[23] Passalacqua, E., Lufrano, F., Squadrito, G., Patti, A., & Giorgi, L., Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance, Electrochimica Acta, 2001, 46, 799- 805. https://doi.org/10.1016/S0013-4686(00)00679-4
[24] Gamburzev, S., & Appleby, A. J., Recent progress in performance improvement of the proton exchange membrane fuel cell (PEMFC), Journal of Power Sources, 2002, 107, 5-12. https://doi.org/10.1016/ S0378-7753(01)00970-3
[25] Qi, Z., & Kaufman, A., Low Pt loading high performance cathodes for PEM fuel cells, Journal of Power Sources, 2003,113, 37-43. https://doi.org/10.1016/ S0378-7753(02)00477-9
[26] Sasikumar, G., Ihm, J. W., & Ryu, H., Dependence of optimum Nafion content in catalyst layer on platinum loading, Journal of Power Sources, 2004, 132, 11- 17. https://doi.org/10.1016/j.jpowsour.2003.12.060
[27] Sasikumar, G., Ihm, J. W., & Ryu, H., Optimum Nafion content in PEM fuel cell electrodes, Electrochimica Acta, 2004, 50, 601-605. https://doi. org/10.1016/j.electacta.2004.01.126
[28] Yang, T.-H., Yoon, Y.-G., Park, G.-G., Lee, W.- Y., & Kim, C.-S., Fabrication of a thin catalyst layer using organic solvents, Journal of Power Sources, 2004, 127, 230-233. https://doi.org/10.1016/j.jpowsour.2003.09.018
[29] Uchida, M., Aoyama, Y., Eda, N., & Ohta, A., New Preparation Method for Polymer‐Electrolyte Fuel Cells, Journal of the Electrochemical Society, 1995,142, 463. https://doi.org/ 10.1149/1.2044068
[30] Ramya, K., Velayutham, G., Subramaniam, C. K., Rajalakshmi, N., & Dhathathreyan, K. S., Effect of solvents on the characteristics of Nafion®/PTFE composite membranes for fuel cell applications, Journal of Power Sources, 2006, 160(1), 10-17. https://doi. org/10.1016/j.jpowsour.2005.12.082
[31] Song, C.-H., & Park, J.-S., Effect of dispersion solvents in catalyst inks on the performance and durability of catalyst layers in proton exchange membrane fuel cells, Energies, 2019, 12(3), 549. https:// doi.org/10.3390/en12030549
[32] Welch, C., Labouriau, A., Hjelm, R., Orler, B., Johnston, C., & Kim, Y. S., Nafion in dilute solvent systems: Dispersion or solution?. ACS Macro Letters, 2012, 1(12), 1403-1407. https://doi.org/10.1021/ mz3005204
[33] Jung, H.-Y., Kim, J.-Y., & Park, J.-K., Effect of Nafion dispersion solvent on the interfacial properties between the membrane and the electrode of a polymer electrolyte membrane-based fuel cell, Solid State Ionics, 2011, 196(1), 73-78. https://doi.org/10.1016/j. ssi.2011.06.003108
[34] Safronova, E.Y., Voropaeva, D.Y., Safronov, D.V., Stretton, N., Parshina, A.V., & Yaroslavtsev, A.B., Correlation between Nafion Morphology in Various Dispersion Liquids and Properties of the Cast Membranes. Membranes, 2023, 13(1), 13. https://doi. org/10.3390/membranes13010013.
[35] Gharibi, H., & Abdullah Mirzaie, R., Fabrication of gas-diffusion electrodes at various pressures and investigation of synergetic effects of mixed electrocatalysts on oxygen reduction reaction, Journal of Power Sources, 2003, 115, 194–202. https://doi.org/10.1016/ S0378-7753(02)00710-3
[36] Bradley, D. J., & Pitzer, K. S., Thermodynamics of electrolytes. 12. Dielectric properties of water and Debye-Hueckel parameters to 350.degree.C and 1 kbar, The Journal of Physical Chemistry, 1979,83, 1599-1603. https://doi.org/10.1021/j100475a009
[37] Uematsue, M., & Franck, E. U. (1980). Static Dielectric Constant of Water and Steam, Journal of Physical and Chemical Reference Data, 1980, 9, 1291-1306. https://doi.org/10.1063/1.555632
[38] Harvey, A. H., & Prausnitz, J. M., Dielectric constants of fluid mixtures over a wide range of temperature and density, Journal of Solution Chemistry, 1987, 16, 857-869. https://doi.org/10.1007/BF00650755
[39] Buckingham, A. D., The dielectric constant of a liquid, Australian Journal of Chemistry, 1953, 6, 93- 103. https://doi.org/10.1071/CH9530093
[40] Buckingham, A. D., The calculation of true dipole moments form solutions in Polar Solvents, Australian Journal of Chemistry, 1953, 6, 323-331. https://doi. org/10.1071/CH9530323
[41] Kirkwood, J. G., The Dielectric Polarization of Polar Liquids, The Journal of Chemical Physics, 1939, 7, 911-919. https://doi.org/10.1063/1.1750343
[42] Franks, F. (Ed.)., Water: A comprehensive treatise (Vol. 2), 1973, PlenumPress.
[43] Pozio, A., De Francesco, M., Cemmi, A., Cardellini, F., & Giorgi, L., Comparison of high surface Pt/C catalysts by cyclic voltammetry, Journal of Power Sources, 2002, 105, 13-19. https://doi.org/10.1016/ S0378-7753(01)00921-1
[44] Perez, J., Gonzalez, E. R., & Ticianelli, E. A., Oxygen electrocatalysis on thin porous coating rotating platinum electrodes, Electrochimica Acta,1998, 44, 1329. https://doi.org/10.1016/S0013-4686(98)00255- 2
[45] Ciureanu, M., & Wang, H., Electrochemical Impedance Study of Electrode‐Membrane Assemblies in PEM Fuel Cells: I. Electro‐oxidation of H 2 and H 2 / CO Mixtures on Pt‐Based Gas‐Diffusion Electrodes, Journal of the Electrochemical Society,1999, 146, 4031. https://doi.org/ 10.1149/1.1392588
[46] Antolini, E., Giorgi, L., Pozio, A., & Passalacqa, E., Influence of Nafion loading in the catalyst layer of gas-diffusion electrodes for PEFC, Journal of Power Sources, 1999,77, 136. https://doi.org/10.1016/ S0378-7753(98)00186-4
[47] Parthasarathy, A., Martin, C. R., & Srinivasan, S., Investigations of the O2 Reduction Reaction at the Platinum/Nafion® Interface Using a Solid‐State Electro109 chemical Cell, Journal of the Electrochemical Society, 1991, 138(4), 916. https://doi.org10.1149/1.2085747
[48] Wang, J. (2000). Analytical electrochemistry (2nd ed.). Wiley, 2000, Pages 60-63.