Metal‐organic framework‐derived Cu@Co4N nanoparticles anchored on N-doped carbon nanotubes for efficient and stable ORR activity

Document Type : Research Paper

Authors

1 Hydrogen and Fuel Cell Research Laboratory, Department of Chemistry, Yasouj University, Yasouj, Iran

2 Department of Chemistry, School of basic sciences, Yasouj University, Yasouj, Iran

Abstract

Developing highly efficient, durable, and low-cost electrocatalysts for oxygen reduction reaction (ORR) is very important for energy conversion technologies. Electrocatalysts with porous structures, numerous active sites, and earth-abundant are exceedingly favorable for ORR reaction. In this work, the 3D nano hollow-shell Cu@Co4N anchored on N-doped carbon nanotubes (Cu@Co-N-C) was synthesized using pyrolyzed Cu@ZnCoZIF. The synthesized Cu@Co-N-C with bimetallic active sites, high specific surface area, high porosity structure, and nitrogen doping level demonstrates superior ORR activity. The physical characteristics of the cathode electrocatalysts were assessed through X-ray powder diffraction (XRD), scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), Raman, and energy dispersive X-ray analysis (EDX) for elemental mapping. The electrocatalyst illustrates a higher half-wave potential of 0.88 V vs. RHE than that of the Pt/C electrocatalyst in an alkaline electrolyte. Moreover, it also has great ORR stability, making it one of the best Pt-free electrocatalysts. The current density of the Cu@Co-N-C is approximately -5.46 mA cm-2, which is higher than that of Co-N-C (-4.20 mA cm-2), and NCNTs (-1.9 mA cm-2). Moreover, higher stability was obtained for Cu@Co-N-C in comparison with Pt/C. So, this material is an excellent choice as a cathodic catalyst for application in metal-air fuel cells.

Keywords

Main Subjects


[1] Akbarian P. Kheirmand M. Faraji M. “Facile electrochemical fabrication of high‐performance graphene quantum dots‐supported Mn3O4/Ag hybrid catalyst for oxygen reduction reaction in alkaline media”, Int. J. Energy Res., 2022, 46: 23004.
[2] Amiinu I. S. Pu Z. Liu X. Owusu K. A. Monestel H. G. R. Boakye F. O. Zhang H. Mu S. “Multifunctional Mo–N/C@ MoS2 electrocatalysts for HER,OER, ORR, and Zn–air batteries”, Adv. Funct. Mater., 2017, 27: 1.
[3] Girishkumar G. McCloskey B. Luntz A. C. Swan-Hydrogen, Fuel Cell & Energy Storage 10 (2023) 327-337335
son S. Wilcke W. “Lithium-Air Battery: Promiseand Challenges”, J. Phys. Chem. Lett., 2010, 1:2193.
[4] Zhou G. Li M. Li Y. Dong H. Sun D. Liu X. LinX. Ziqi T. Tang Y. “Regulating the electronic structure of CoP nanosheets by O incorporation forhigh‐efficiency electrochemical overall water splitting”, Adv. Func. Mater., 2020, 30: 1.[5] Wan X. Liu X. Li Y. Yu R. Zheng L. Yan W. Wang H. Xu M. Shui J. “Fe‐N‐C electrocatalyst with dense active sites and efficient mass transport for high‐performance proton exchange membrane fuel cells”, Nat. Catal., 2019, 2: 259.
[6] Zhang L. Doyle-Davis K. Sun X. “Pt-Based electrocatalysts with high atom utilization efficiency:from nanostructures to single atoms”, Energy Environ. Sci., 2019, 12: 492.
[7] Katsounaros I. Cherevko S. Zeradjanin A. R.Mayrhofer K. J. “Oxygen electrochemistry as a cornerstone for sustainable energy conversion”,Angew. Chem. Int. Ed., 2014, 53: 102.
[8] Zhang K. Zhang Y. Zhang Q. Liang Z. Gu L. Guo W. Zhu B. Guo S. Zou R. “Metal‐organic framework‐derived Fe/Cu‐substituted Co nanoparticlesembedded in CNTs‐grafted carbon polyhedron for Zn‐air batteries”, Carbon Energy, 2020, 2: 283.
[9] Shao M. Chang Q. Dodelet J.-P. Chenitz R. “Recent advances in electrocatalysts for oxygen reduction reaction”, Chem. Rev., 2016, 116: 3594 .
[10] Wang Z. Jin H. Meng T. Lia K. Meng W. Yang J.He D. Xiong Y. Mu S. “Fe, Cu‐coordinated ZIFderived carbon framework for efficient oxygenreduction reaction and zinc–air batteries”, Adv.Func. Mater., 2018, 28: 1.
[11] Meng F. L. Liu K. H. Zhang Y. Shi M. M. Zhang X. B. Yan J. M. Jiang Q. “Recent advances toward the rational design of efficient bifunctional air electrodes for rechargeable Zn–air batteries”, Small,2018, 14: 1.
[12] Ma X. Li K. Zhang X. Wei B. Yang H. Liu L.Zhang M. Zhang X. Chen Y. “The surface engineering of cobalt carbide spheres through N, B co-doping achieved by room-temperature in situanchoring effects for active and durable multifunctional electrocatalysts”, J. Mater. Chem. A, 2019,7: 14904.
[13] Sun M. Davenport D. Liu H. Qu J. Elimelech M.Li J. “Highly efficient and sustainable non-precious-metal Fe–N–C electrocatalysts for the oxygen reduction reaction”, J. Mater. Chem. A, 2017,6: 2527.
[14] Sun M. Zhang G. Liu H. Liu Y. Li J. “α-and γ-Fe 2 O 3 nanoparticle/nitrogen doped carbon nanotube catalysts for high-performance oxygen reduction reaction”, Sci. China Mater., 2015, 58: 683.
[15] Wu Y. J. Wu X. H. Tu T. X. Zhang P. F. Li J.T. Zhou Y. Huang L. Sun S. G. “Controlled synthesis of FeNx-CoNx dual active sites interfaced with metallic Co nanoparticles as bifunctional oxygen electrocatalysts for rechargeable Zn-air batter-
ies”, Appl. Catal. B: Environ., 2020, 278: 1
[16] Antolini E. “Structural parameters of supported fuel cell catalysts: The effect of particle size, inter-particle distance and metal loading on catalytic activity and fuel cell performance”, Appl. Catal.B-Environ., 2016, 181: 298.
[17] Deng Y. Dong Y. Wang G. Sun K. Shi X. Zheng L. Li X. Liao S. “Well-defined ZIF-derived Fe–N codoped carbon nanoframes as efficient oxygen reduction catalysts”, ACS Appl. Mater. Interfaces,2017, 9: 9699.
[18] Chung H. T. Cullen D. A. Higgins D. Sneed B. T. Holby E. F. More K. L. Zelenay P. “Direct atomic‐level insight into the active sites of a high performance PGM‐free ORR catalyst”, Science, 2017, 357: 479.
[19] Jiao L. Seow J. Y. R. Skinner W. S. Wang Z. U. Jiang H. L. “Metalorganic frameworks: structures and functional applications”, Mater. Today., 2019,27: 43.
[20] Wu H. B. Lou X. W. D. “Metal‐organic frameworks and their derived materials for electrochemical energy storage and conversion: promises and challenges”, Sci Adv., 2017, 3: 1.
[21] Chen Y. Ji S. Wang Y. Dong J. Chen W. Li Z. Shen R. Zheng L. Zhuang Z. Wang D. Li Y. “Isolated single iron atoms anchored on N‐doped porouscarbon as an efficient electrocatalyst for the oxygen reduction reaction”, Angew. Chem., Int. Ed.,2017, 56: 6937.
[22] Nørskov J. Rossmeisl J. Logadottir A. Lindqvist L. “Origin of the overpotential for oxygen reduction at a fuel‐cell cathode”, J. Phys. Chem. B.,2004, 108: 17886.
[23] Kuang M. Wang Q. Han P. Zheng G. “Cu, Coembedded N‐enriched mesoporous carbon for efficient oxygen reduction and hydrogen evolutionreactions”, Adv. Energy Mater., 2017, 7: 1.
[24] Morales D. M. Kazakova M. A. Dieckhöfer S. Selyutin A. G. Golubtsov G. V. Schuhmann W.Masa J. “Trimetallic Mn‐Fe‐Ni oxide nanoparticles supported on multi‐walled carbon nanotubesas high‐performance bifunctional ORR/OER elec-
trocatalyst in alkaline media”, Adv. Func. Mater., 2020, 30: 1.
[25] Sun T. Zhang P. Chen W. Wang K. Fu X. Zheng T.Jiang J. “Single iron atoms coordinated to g-C3N4on hierarchical porous N-doped carbon polyhedra as a high-performance electrocatalyst for the oxygen reduction reaction”, Chem Comm, 2020, 56:798 .
[26] Wu Y. J. Wu X. H. Tu T. X. Zhang P. F. Li J. T.Zhou Y. Huang L. Sun S. G. “Controlled synthesis of FeNx-CoNx dual active sites interfaced with metallic Co nanoparticles as bifunctional oxygenelectrocatalysts for rechargeable Zn-air batteries”,
Appl. Catal. B, 2020, 278: 1.
[27] Pan Y. Sun K. Liu S. Cao X. Wu K. Cheong W.C. Chen Z. Wang Y. Li Y. Liu Y. Wang D. PengQ. Chen C. Li Y. “Core–Shell ZIF-8@ZIF-67-Derived CoP Nanoparticle-Embedded N-DopedCarbon Nanotube Hollow Polyhedron for Efficient
Overall Water Splitting”, J. Am. Chem. Soc. 2017,140: 2610.
[28] Deng Y. Chi B. Li J. Wang G. Zheng L. Shi X.Cui Z. Du L. Liao S. Zang K. Luo J. Hu Y. Sun X.“Atomic Fe-Doped MOF-Derived Carbon Poly-hedrons with High Active-Center Density and Ul-tra-High Performance toward PEM Fuel Cells”,
Adv. Energy Mater., 2019, 9: 1.
[29] Akbarian P. Kheirmand M. Asadi A. “Bimetallic3D hollow-nanoshell FeCo-oxynitride/N and S co-doped carbon nanotubes as a robust bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries”, J. Mater. Sci., 2023, 58: 8889.
[30] Qin X. Huang Y. Wang K. Xu T. Wang Y. Wang M. Zhao M. Gao Q. “Highly Efficient Oxygen Reduction Reaction Catalyst Derived from Fe/Ni Mixed-Metal–Organic Frameworks for Application of Fuel Cell Cathode”, Ind. Eng. Chem. Res.,2019, 58:10224.
[31] Wang Y. Zhang B. Pan W. Ma H. Zhang J. “3 Dporous nickel–cobalt nitrides supported on nickel foam as efficient electrocatalysts for overall water splitting”, ChemSusChem, 2017, 10: 4170