Mechanical behavior of metal hydrides and hydrogen storage containers: A review

Document Type : Research Paper

Authors

1 Babol Noshirvani University of Technology, Mechanical Engineering Faculty, Babol, Iran

2 Babol Noshirvani University of Technology, Shariati Avenue, Babol, Iran

3 Babol Noshirvani University Of Technology, Shariati Avenue, Babol, Iran

Abstract

This review article delves into the intricate mechanical behaviors exhibited by metal hydrides within hydrogen storage tanks during hydrogen absorption and release processes. The metal’s crystal structure undergoes expansion upon hydrogen absorption, leading to the liberation of energy—an exothermic phenomenon. Conversely, during hydrogen release, the metal contracts, necessitating an intake of energy from the surroundings—an endothermic occurrence. These cyclic processes give rise to two significant mechanical implications: firstly, the initiation of a decrepitation mechanism; secondly, the material undergoes rhythmic expansion and contraction, often referred to as "hydride breathing." These dual mechanisms collectively contribute to the escalating strain and stress imposed on the walls of the metal hydride container, thereby impacting its structural integrity. This review delves into the comprehensive landscape of experimental studies, measurement techniques, and modeling approaches employed in analyzing stress and strain within metal hydride hydrogen storage tanks. The report encompasses an exploration of the factors amplifying mechanical stresses within the metal hydride bed, alongside proposed strategies for their mitigation and control. Furthermore, the article concludes by presenting pragmatic and experimental recommendations aimed at the development of secure hydrogen storage tanks grounded in metal hydride technology.

Keywords

Main Subjects


[1]. Muir SS, Yao X.(2011). Progress in sodium borohydride as a hydrogen storage material: Development of hydrolysis catalysts and reaction systems. International Journal of Hydrogen Energy. 36(10):5983-97.
[2]. Jain I, Lal C, Jain A.(2010). Hydrogen storage in Mg: a most promising material. International journalof hydrogen energy. 35(10):5133-44.
[3]. Thomas G. (2000). Overview of storage development DOE hydrogen program. Sandia National Laboratories. 9.
[4]. Tashie-Lewis BC, (2021). Nnabuife SG. Hydrogen production, distribution, storage and power conversion in a hydrogen economy-a technology review.Chemical Engineering Journal Advances. 8:100172.
[5]. Prabhukhot Prachi R, Wagh Mahesh M, Gangal Aneesh C. (2016). A review on solid state hydrogen storage material. Adv Energy Power. 4(2):11-22.
[6]. Demirocak DE.(2017). Hydrogen storage technologies. Nanostructured Materials for Next-Generation Energy Storage and Conversion: Hydrogen Production, Storage, and Utilization. 117-42.
[7]. Gkanas EI. (2018). Metal hydrides: modeling of metal hydrides to be operated in a fuel cell. Portable Hydrogen Energy Systems: Elsevier; . p. 67-90.
[8]. Serdaroglu G, Khzouz M, Gillott M, Shields A, Walker GS. (2015). The effect of environmental conditions on the operation of a hydrogen refuelling station. International Journal of Hydrogen Energy. 40(47):17153-62.
[9].Langmi HW, Engelbrecht N, Modisha PM,Bessarabov D. (2022). Hydrogen storage. Electrochemical Power Sources: Fundamentals, Systems, and Applications: Elsevier; . p. 455-86.
[10]. Sandí G. (2004). Hydrogen storage and its limitations. The Electrochemical Society Interface.13(3):40.
[11]. Eberle U, Felderhoff M, Schueth F.(2009).Chemical and physical solutions for hydrogen storage. An gewandte Chemie International Edition. 48(36):6608-30.
[12]. Chalk SG, Miller JF. (2006). Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems. Journal of Power Sources. 159(1):73-80.
[13]. Hynes NRJ, Sankaranarayanan R, Kannan PS, Khan A, Khan AAP, Asiri AM, Dzudzevic-Cancar H.(2021 ). Solid-state hydrides for hydrogen storage.Nanomaterials for hydrogen storage applications: Elsevier; . p. 249-64.
[14]. Sandrock G, Bowman Jr RC.(2003). Gas-based hydride applications: recent progress and future needs.Journal of Alloys and Compounds. 356:794-9.
[15]. Wenger D, Polifke W, Schmidt-Ihn E, Abdel-Baset T, Maus S.(2009). Comments on solid state hydrogen storage systems design for fuel cell vehicles. International journal of hydrogen energy. 34(15):6265-70.
[16]. Lototskyy MV, Tolj I, Pickering L, Sita C, Barbir F, Yartys V. (2017). The use of metal hydrides in fuel cell applications. Progress in Natural Science: Materials International. ;27(1):3-20.
[17]. Buchner H, Povel R. (1982 ).The daimler-benzhydride vehicle project. International Journal of Hydrogen Energy.7(3):259-66.
[18]. Lototskyy MV, Yartys VA, Pollet BG, Bowman Jr RC.(2014). Metal hydride hydrogen compressors:a review. International journal of hydrogen energy.39(11):5818-51.
[19]. Lototskyy M, Sekhar BS, Muthukumar P, LinkovV, Pollet B.(2015). Niche applications of metal hydrides and related thermal management issues. Journal of Alloys and Compounds. 645:S117-S22.
[20]. Bhuiya MMH, Kumar A, Kim KJ. Metal hydrides in engineering systems, processes, and devices:A review of non-storage applications. International Journal of Hydrogen Energy. 2015;40(5):2231-47.
[21]. Goto K, Hirata T, Yamamoto I, Nakao W. (2018).Swelling response behavior of palladium during hydrogen absorption and discharge. International Journal of Hydrogen Energy. 43(24):11092-9.
[22]. Desai FJ, Uddin MN, Rahman MM, Asmatulu R.(2023). A critical review on improving hydrogen storage properties of metal hydride via nanostructuringand integrating carbonaceous materials. InternationalJournal of Hydrogen Energy.
[23]. Mueller WM, Blackledge JP, Libowitz GG.(2013 ). Metal hydrides: Elsevier; .
[24]. Hong S-H, Song MY.(2013). Hydrogen desorption and absorption properties of Pd and MgO or nano-sized Ni-added MgH2+ LiBH4 composites. Materials Research Bulletin. 48(9):3453-8.
[25]. Gillia O.(2021). Hydride breathing and its consequence on stresses applied to containers: a review. International Journal of Hydrogen Energy.46(72):35594-640.
[26]. Farber E. (1962). The development of metal hydride chemistry. Chymia.8:165-80.
[27]. Walker G. (2008 ). Solid-state hydrogen storage:materials and chemistry: Elsevier; .
[28]. Muetterties EL.(1971). Transition metal hydrides. .
[29]. Viswanathan B, Murthy S, Sastri M.(1999). Metal hydrides: fundamentals and applications. Springer:Berlin, Germany; .
[30]. Dewangan SK, Mohan M, Kumar V, Sharma A,Ahn B.(2022). A comprehensive review of the pros-
pects for future hydrogen storage in materials‐application and outstanding issues. International Journal of Energy Research. 46(12):16150-77.
[31]. Mohammadshahi S, Gray EM, Webb C. (2016). A review of mathematical modelling of metal-hydride systems for hydrogen storage applications. international journal of hydrogen energy.41(5):3470-84.
[32]. Luo W, Gaumet J-J, Mai L-Q. (2017). Antimony-based intermetallic compounds for lithium-ion and sodium-ion batteries: synthesis, construction and application. Rare Metals. 36:321-38.
[33]. Kazakov A, Blinov D, Bodikov VY, Mitrokhin S, Volodin A.(2021). Hydrogen storage and electrochemical properties of annealed low-Co AB5 type intermetallic compounds. International Journal of Hydrogen Energy. 46(25):13622-31.
[34]. Kazakov A, Dunikov D, Mitrokhin S.(2016).AB5-type intermetallic compounds for biohydrogen purification and storage. International Journal of Hydrogen Energy. 41(46):21774-9.
[35]. Dong Z, Wang Y, Wu H, Zhang X, Sun Y, Li Y, et al.(2022). A design methodology of large-scale metal hydride reactor based on schematization for hydrogen storage. Journal of Energy Storage. 49:104047. Hydrogen, Fuel Cell & Energy Storage 10(2023) 257-278272
[36] Joubert J-M, Paul-Boncour V, Cuevas F, Zhang J, Latroche M. LaNi5 related AB5 compounds:Structure, properties and applications. Journal of Alloys and Compounds. 2021;862:158163.
[37]. Lynch FE. Operating characteristics of high performance commercial metal hydride heat exchangers. Journal of the Less Common Metals.1980;74(2):411-8.
[38]. Bernauer O. Metal hydride technology. International journal of hydrogen energy. 1988;13(3):181-90.
[39]. Uchida H, Uchida H, Huang YC. Effect of the pulverization of LaNi5 on the hydrogen absorption rate and the X-ray diffraction patterns. Journal of the Less Common Metals. 1984;101:459-68.
[40]. Sandrock G, Reilly J, Johnson J. Metallurgical considerations in the production and use of FeTi alloys for hydrogen storage. Brookhaven National Lab., Upton, NY (USA); 1976.
[41]. Qi-Dong W, Jing W, Chang-Ping C, Zhou Y. An investigation of the removal of hydrogen from gas mixtures using misch-metal-based hydrogenstorage metals. Journal of the Less Common Metals.1987;131(1-2):321-8.
[42]. Bloch J. Analysis of the kinetics of hydride formation during the activation of massive intermetallic samples. Journal of alloys and compounds.1998;270(1-2):194-202.
[43]. Wang R. Crack formation and fracture of LaNi5 during hydrogenation. Materials Research Bulletin. 1976;11(3):281-4.
[44]. Lin X, Sun D, Chen S, Zhu Q, Leng H, Li Numerical analysis on pulverization and self-densification for hydrogen storage performance of a metal hydride tank. Applied Thermal Engineering.2019;161:114129.
[45]. Kempf A, Martin W. Measurement of the thermal properties of TiFe0. 85Mn0. 15 and its hydrides. International journal of hydrogen energy.1986;11(2):107-16.
[46]. Hahne E, Kallweit J. Thermal conductivity of metal hydride materials for storage of hydrogen: experimental investigation. International Journal of Hydrogen Energy. 1998;23(2):107-14.
[47]. Busqué R, Torres R, Grau J, Roda V, Husar Effect of metal hydride properties in hydrogen absorption through 2D-axisymmetric modeling and experimental testing in storage canisters. international journal of hydrogen energy. 2017;42(30):19114-25.
[48]. Lin X, Zhu Q, Leng H, Yang H, Lyu T, Li Q.Numerical analysis of the effects of particle radius and porosity on hydrogen absorption performances in metal hydride tank. Applied Energy. 2019;250:1065-72.
[49]. Mostafavi SA, Hajabdollahi Z, Ilinca A.Multi-objective optimization of metal hydride hydrogen storage tank with phase change material. Thermal Science and Engineering Progress. 2022;36:101514.
[50]. MATSUSHITA M, MONDE M, MITSUTAKE Y. A study of state change in metal hydride packed-bed caused by particle breakup. Transactions of the Japan Society of Mechanical Engineers, Part B.2012;78(794):1810-21.
[51]. Salque B, Chaise A, Iosub V, Gillia O, Charlas B, Dupuis C, Guenoux L. Measure of the hydride breathing while cyclically absorbing and desorbing hydrogen. Journal of Alloys and Compounds. 2015;645:S353-S6.
[52]. Matsushita M, Monde M, Mitsutake Y. Experimental formula for estimating porosity in a metal hydride packed bed. International journal of hydrogen energy. 2013;38(17):7056-64.
[53]. Okumura M, Ikado A, Saito Y, Aoki H, Miura T, Kawakami Y. Pulverization mechanism of hydrogen storage alloys on microscale packing structure. International journal of hydrogen energy.2012;37(14):10715-23.
[54]. Charlas B, Gillia O, Doremus P, Imbault D.Experimental investigation of the swelling/shrinkage of a hydride bed in a cell during hydrogen absorption/desorption cycles. International journal of hydrogen energy. 2012;37(21):16031-41.
[55]. Ribeiro ES, Gil JM. A novel capacitive device for the study of volumetric expansion of hydride powders. International Journal of Hydrogen Energy.2015;40(43):14900-10.
[56]. Sujan G, Pan Z, Li H, Liang D, Alam N. Anoverview on TiFe intermetallic for solid-state hydrogen storage:microstructure, hydrogenation and fabrication processes. Critical Reviews in Solid State and Materials Sciences. 2020;45(5):410-27.
[57]. Somacarrera RB. Numerical Modeling and Experimental Analysis of the Desorption Process in a Metal Hydride Hydrogen Storage System: Universitat Politècnica de Catalunya. Escola Tècnica Superior d’Enginyeria …; 2017.
[58]. Botzung M, Chaudourne S, Perret C, Latroche M, Percheron-Guegan A, Philippe M. Development and simulation of a hydrogen storage unit using metal hydrides. Mechanics & Industry. 2007;8(3):241-6.
[59]. Dornheim M. Thermodynamics of metal hydrides: tailoring reaction enthalpies of hydrogen storage materials. Thermodynamics-Interaction Studies-Solids, Liquids and Gases: IntechOpen; 2011.
[60]. Sharma VK, Anil Kumar E. Metal hydrides for energy applications–classification, PCI characterisation and simulation. International Journal of Energy Research. 2017;41(7):901-23.
[61]. Salam MA, Islam T, Ahmed K, Habib S, Abdullah B. Potential Feature of Combined AB5-Type Metal Hydride Tank and PEMFC as a Safer Systemfor Hydrogen Fueling in Bangladesh. Frontiers in Energy Research. 2021:748.
[62]. Lewis SD, Chippar P. Analysis of heat and mass transfer during charging and discharging in a metal hydride-phase change material reactor. Journal of Energy Storage. 2021;33:102108.
[63]. Elhamshri FA, Kayfeci M. Enhancement of hydrogen charging in metal hydride-based storage systems using heat pipe. International Journal of Hydrogen Energy. 2019;44(34):18927-38.
[64]. Bebon L, Maynadier A, Chapelle D, Thiébaud Modeling progressive absorption of a hydride material particle submitted to hydrogen. International Journal of Hydrogen Energy. 2021;46(18):10830-7.
[65]. Kamble A, Sharma P, Huot J. Effect of doping and particle size on hydrogen absorption properties of BCC solid solution 52Ti-12V-36Cr. international journal of hydrogen energy. 2017;42(16):11523-7.
[66]. Sleiman S, Huot J. Effect of particle size, pressure and temperature on the activation process of hydrogen absorption in TiVZrHfNb high entropy alloy.Journal of Alloys and Compounds. 2021;861:158615.
[67]. Gambini M, Manno M, Vellini M. Numerical analysis and performance assessment of metal hydride-based hydrogen storage systems. InternationalJournal of Hydrogen Energy. 2008;33(21):6178-87.
[68]. Muthukumar P, Kumar A, Raju NN,Malleswararao K, Rahman MM. A critical review on design aspects and developmental status of metal hydride based thermal machines. international journal of hydrogen energy. 2018;43(37):17753-79.
[69]. Afzal M, Mane R, Sharma P. Heat transfer techniques in metal hydride hydrogen storage: A review. International Journal of Hydrogen Energy.2017;42(52):30661-82.
[70]. Gillia O, Chaise A, Elie M, Planque M. Hydrogen storage tank having metal hydrides. WO.2011;58053:A1.
[71]. Garrison SL, Hardy BJ, Gorbounov MB,Tamburello DA, Corgnale C, Mosher DA, Anton DL.Optimization of internal heat exchangers for hydrogen storage tanks utilizing metal hydrides. International journal of hydrogen energy. 2012;37(3):2850-61.
[72]. Lozano GA, Ranong CN, von Colbe JMB,Bormann R, Hapke J, Fieg G, et al. Optimization of hydrogen storage tubular tanks based on light weight hydrides. International Journal of Hydrogen Energy.2012;37(3):2825-34.
[73]. Johnson TA, Kanouff MP, Dedrick DE, Evans GH, Jorgensen SW. Model-based design of an automotive-scale, metal hydride hydrogen storage system. International Journal of Hydrogen Energy.2012;37(3):2835-49.
[74]. Melnichuk M, Silin N. Guidelines for thermal management design of hydride containers. International journal of hydrogen energy. 2012;37(23):18080-94.
[75]. Visaria M, Mudawar I, Pourpoint T. Enhanced heat exchanger design for hydrogen storage using high-pressure metal hydride: Part 1. Design methodology and computational results. International Journal of Heat and Mass Transfer. 2011;54(1-3):413-23.
[76]. Davids M, Lototskyy M, Malinowski M, VanSchalkwyk D, Parsons A, Pasupathi S, et al. Metal hydride hydrogen storage tank for light fuel cell vehicle. International Journal of Hydrogen Energy.2019;44(55):29263-72.
[77]. Abdin Z, Webb C, Gray EM. One-dimensional metal-hydride tank model and simulation in Matlab–Simulink. International Journal of Hydrogen Energy. 2018;43(10):5048-67.
[78]. Bai X-S, Yang W-W, Tang X-Y, Yang F-S, Jiao Y-H, Yang Y. Hydrogen absorption performance investigation of a cylindrical MH reactor with rectangle heat exchange channels. Energy. 2021;232:121101.
[79]. Chippar P, Lewis SD, Rai S, Sircar A. Numerical investigation of hydrogen absorption in a stackable metal hydride reactor utilizing compartmentalization. International Journal of Hydrogen Energy.2018;43(16):8007-17.
[80]. Kubo K, Kawaharazaki Y, Itoh H. Development of large MH tank system for renewable energy storage. International journal of hydrogen energy.2017;42(35):22475-9.
[81]. Ye Y, Lu J, Ding J, Wang W, Yan J. Performance improvement of metal hydride hydrogen storage tanks by using phase change materials. Applied Energy. 2022;320:119290.
[82]. Mathew A, Nadim N, Chandratilleke TT,Humphries TD, Paskevicius M, Buckley CE. Performance analysis of a high-temperature magnesium hydride reactor tank with a helical coil heat exchanger for thermal storage. International Journal of Hydrogen Energy. 2021;46(1):1038-55.
[83]. Tong L, Yuan C, Yang T, Yuan Y, Chahine R,Xiao J. Thermal management of metal hydride hydrogen storage tank coupled with proton exchange membrane fuel cells. Case Studies in Thermal Engineering.2023;43:102812.
[84]. Molaeimanesh GR, Torabi F. Fuel Cell Modeling and Simulation: From Microscale to Macroscale:Elsevier; 2022.
[85]. Ye Y, Ding J, Wang W, Yan J. The storage performance of metal hydride hydrogen storage tanks with reaction heat recovery by phase change materials. Applied Energy. 2021;299:117255.
[86]. Suárez S, Chabane D, N’Diaye A, Ait-Amirat Y, Djerdir A. Static and dynamic characterization of metal hydride tanks for energy management applications. Renewable Energy. 2022;191:59-70.
[87]. Heubner F, Pohlmann C, Mauermann S, Kieback B, Röntzsch L. Mechanical stresses originating from metal hydride composites during cyclic hydrogenation. International Journal of Hydrogen Energy.2015;40(32):10123-30.
[88]. Flanagan TB, Clewley J. Hysteresis in metal hydrides. Journal of the Less Common Metals.1982;83(1):127-41.
[89]. Tarasov BP, Fursikov PV, Volodin AA, Bocharnikov MS, Shimkus YY, Kashin AM, et al. Metal hydride hydrogen storage and compression systems for energy storage technologies. international journal of hydrogen energy. 2021;46(25):13647-57.
[90]. Ferreira-Aparicio P, Chaparro AM. Portable Hydrogen Energy Systems: Fuel Cells and Storage Fundamentals and Applications: Academic Press;2018.
[91]. Griessen R, Feenstra R. Volume changes during hydrogen absorption in metals. Journal of Physics F: Metal Physics. 1985;15(4):1013.
[92]. Somenkov V, Glazkov V, Irodova A, Shilstein Crystal structure and volume effects in the hydrides of d metals. Journal of the Less Common Metals. 1987;129:171-80.
[93]. Fukai Y. The metal-hydrogen system: basic bulk properties: Springer Science & Business Media;2006.
[94]. Nachev S, de Rango P, Delhomme B, Planté D, Zawilski B, Longa F, et al. In situ dilatometry measurements of MgH2 compacted disks. Journal of alloys and compounds. 2013;580:S183-S6.
[95]. Ebeid E, Zakaria M. Chapter 1—State of theart and definitions of various thermal analysis techniques. Therm Anal. 2021:1-39.
[96]. Bannenberg LJ, Boelsma C, Asano K,Schreuders H, Dam B. Metal hydride based optical hydrogen sensors. Journal of the Physical Society of Japan. 2020;89(5):051003.
[97]. Briki C, de Rango P, Belkhiria S, Dhaou MH, Jemni A. Measurements of expansion of LaNi5 compacted powder during hydrogen absorption/desorption cycles and their influences on the reactor wall. international journal of hydrogen energy. 2019;44(26):13647-54.
[98]. Chen K, Yuan D, Zhao Y. Review of optical hydrogen sensors based on metal hydrides: Recent developments and challenges. Optics & Laser Technolo2021;137:106808.
[99]. Charlas B, Chaise A, Gillia O, Doremus P, Imbault D. Investigation of hydride powder bed swelling and shrinking during hydrogen absorption/desorption cycles under different compressive stresses. Journal of alloys and compounds. 2013;580:S149-S52.
[100]. Escobar AG, Chaise A, Iosub V, Salque B,Fernandez J, Gillia O. Stress effect on the swelling/shrinking behavior of an AB2 alloy during hydrogenation cycles. International Journal of Hydrogen Energy.2017;42(35):22422-31.
[101]. Salque B. Caractérisation mécanique de larespiration des hydrures pour uneconception optimisée des réservoirs de stockage de l’hydrogène parvoie solide: Université Grenoble Alpes; 2017.
[102]. Au M, Wu J, Wang Q-D. Some engineering methods for eliminating deformation and expansion damage of hydride storage containers. Journal of the Less Common Metals. 1991;172:1168-74.
[103]. McKillip S, Bannister C, Clark E. Stress analysis of hydride bed vessels used for tritium storage.Fusion Technology. 1992;21(2P2):1011-6.
[104]. Saito T, Suwa K, Kawamura T. Influence of expansion of metal hydride during hydriding–dehydriding cycles. Journal of alloys and compounds.1997;253:682-5.
[105]. Nasako K, Ito Y, Hiro N, Osumi M. Stress on a reaction vessel by the swelling of a hydrogen absorbing alloy. Journal of Alloys and Compounds.1998;264(1-2):271-6.
[106]. Estochen E, Klein J. Metal hydride wall stress measurements on a four-inch short (FISH) bed. Fusion science and technology. 2005;48(1):79-82.
[107]. Heroux K, Estochen E. Hydriding-Induced Wall Stress Evaluation of a Prototype Four-Inch Short (FISH) Tritium Hydride Bed. Fusion Science and Technology. 2017;71(3):410-5.
[108]. Qin F, Guo L, Chen J, Chen Z. Pulverization,expansion of La0. 6Y0. 4Ni4. 8Mn0. 2 during hydrogen absorption–desorption cycles and their influences in thin-wall reactors. International Journal of Hydrogen Energy. 2008;33(2):709-17.
[109]. Duan W, Du J, Wang Z, Niu Y, Huang T, Li Z, et al. Strain variation on the reaction tank of highhydrogen content during hydrogen absorption-desorption cycles. International journal of hydrogen energy.2013;38(5):2347-51.
[110]. Lototskyy M, Tolj I, Klochko Y, Davids MW, Swanepoel D, Linkov V. Metal hydride hydrogen storage tank for fuel cell utility vehicles. International Journal of Hydrogen Energy. 2020;45(14):7958-67.
[111]. Kawamura M, Ono S, Mizuno Y. Stress induced in metal hydrogen powder bed by hydriding reaction. Metal–Hydrogen Systems: Elsevier; 1982. p.489-500.
[112]. Wang Q-D, Wu J, Chen C-P, Li Z-P. An investigation of the mechanical behaviour of hydrogen storage metal beds on hydriding and dehydriding and several methods of preventing the damage of hydride containers caused by the expansion of hydrogen storage metals. Journal of the Less Common Metals.1987;131(1-2):399-407.
[113]. Haas I, Schütt E. The effect of mechanical stress on the absorption of hydrogen by metal hydrides. International journal of hydrogen energy.1991;16(12):815-20.
[114]. Ao B, Chen S, Jiang G. A study on wall stresses induced by LaNi5 alloy hydrogen absorption–desorption cycles. Journal of alloys and compounds.2005;390(1-2):122-6.
[115]. Perras YE, Dedrick DE, Zimmerman MD. Wall pressure exerted by hydrogenation of sodium aluminum hydride. Sandia National Laboratories (SNL),Albuquerque, NM, and Livermore, CA …; 2009.
[116]. Lin C-K, Huang S-M, Jhang Y-H. Effects of cyclic hydriding–dehydriding reactions of Mg2Ni alloy on the expansion deformation of a metal hydride storage vessel. Journal of Alloys and Compounds.2011;509(25):7162-7.
[117]. Lin C-K, Chen Y-C. Effects of cyclic hydriding–dehydriding reactions of LaNi5 on the thin-wall deformation of metal hydride storage vessels with var ious configurations. Renewable energy. 2012;48:404-10.
[118]. Borzenko V, Romanov I, Dunikov D, Kazakov A. Hydrogen sorption properties of metal hydridebeds: Effect of internal stresses caused by reactor geometry. International Journal of Hydrogen Energy.2019;44(12):6086-92.
[119]. Lin H-J, Li H-W, Shao H, Lu Y, Asano K. Insitu measurement technologies on solid-state hydrogen storage materials: a review. Materials Today Energy. 2020;17:100463.
[120]. Nakamura Y, Akiba E. In-situ X-ray diffraction study on LaNi5 and LaNi4. 75Al0. 25 in the initial activation process. Journal of alloys and compounds. 2000;308(1-2):309-18.
[121]. Heubner F, Mauermann S, Kieback B,Röntzsch L. Stress development of metal hydride composites for high density hydrogen storage applications.Journal of Alloys and Compounds. 2017;705:176-82.
[122]. Heubner F, Hilger A, Kardjilov N, Manke I,Kieback B, Gondek Ł, et al. In-operando stress measurement and neutron imaging of metal hydride composites for solid-state hydrogen storage. Journal of Power Sources. 2018;397:262-70.
[123]. Brewin PR, Coube O, Doremus P, Tweed JH.Modelling of powder die compaction: Springer; 2008.
[124]. Charlas B. Study of the mechanical behavior of an intermetallic hydride compound used in hydrogen storage. Universite de Grenoble; 2013.
[125]. Charlas B. Etude du comportement mécanique d’un hydrure intermétallique utilisé pour lestokage d’hydrogène: Grenoble; 2013.
[126]. Hocine A, Chapelle D, Boubakar LM,Benamar A, Bezazi A. Analysis of intermetallic swelling on the behavior of a hybrid solution for compressed hydrogen storage–Part I: Analytical modeling. Materials & Design (1980-2015). 2010;31(5):2435-43.
[127]. Chapelle D, Hocine A, Carbillet S, Boubakar Analysis of intermetallic swelling on the behavior of a hybrid solution for compressed hydrogen storage–Part II: Finite element method simulation. Materials & Design (1980-2015). 2012;36:459-69.
[128]. Shaji S, Mohan G. Numerical simulation of the effect of aluminum foam on sorption induced wall strain in vertical, metal hydride based hydrogen storage container. Journal of alloys and compounds.2018;735:2675-84.
[129]. Dinachandran L, Mohan G. Numerical simulation of the parametric influence on the wall strain distribution of vertically placed metal hydride based hydrogen storage container. International Journal of Hydrogen Energy. 2015;40(16):5689-700.
[130]. Aoki H, Nakagawa T, Inomata A, Miura T. Stress analysis of formed bed of micro-encapsulated hydrogen-absorbing alloy. ECOS 20002000. p.1157-68
[131]. Hu X, Qi Z, Qin F, Chen J. Mechanism analysis on stress accumulation in cylindrical vertical-placed metal hydride reactor. Energy and Power Engineering. 2011;3(04):490.
[132]. Charlas B, Kneib F, Gillia O, Imbault D,Doremus P. A tool for modelling the breathing of hydride powder in its container while cyclically absorbing and desorbing hydrogen. International Journal of Hydrogen Energy. 2015;40(5):2283-94.