Highly Ordered Nanoporous β-Ni(OH)2 Nanobelt Array Architectures as Electrode Material for Electrochemical Capacitors: Design, Synthesis, Characterization and Supercapacitive Evaluation

Document Type : Research Paper


Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, 33535111, Iran



The electrochemical performances derived from the supercapacitors extremely depend on their morphology. So, designing nanostructured electrode materials has a dramatic role in supercapacitors. Herein, highly ordered nanoporous Ni(OH)2 nanobelt arrays (HONNA) were synthesized via a mild wet-chemical route. Ammonia and persulfate concentrations played an important role in the formation of the nanobelt array architecture. The as-prepared nanobelt arrays were characterized using FE-SEM, FT-IR, XRD, and EDX analysis. The resultant Ni(OH)2 nanobelt electrode revealed a specific capacitance of 384 mF cm 2 at 1.0 mA cm 2, fast rate performance, and excellent cycle life. These notable electrochemical features were related to the morphology of highly ordered nanoporous nanobelt array architectures, which provides numerous free channels and offers more electroactive sites and sufficient buffering space to moderate inner mechanical stress and minimize the ion transfer path during the redox reactions. These highly ordered nanoporous Ni(OH)2 nanobelt arrays were suitable candidates as electrode material in supercapacitors.


Main Subjects

[1] Amiri M., Moosavifard S. E., Davarani S. S. H.,Kaverlavani S. K., and Shamsipur M., “MnCoP hollow nanocubes as novel electrode material for asymmetric supercapacitors”, Chem. Eng. J., 2021,420, Part 1, 129910.
[2] Ensafi A. A., Moosavifard S. E., Rezaei B.,and Kaverlavani S. K., “Engineering onion-like nanoporous CuCo2O4 hollow spheres derived from bimetal-organic frameworks for high-performance asymmetric supercapacitors”, J. Mater. Chem. A,
2018, 6(22): 10497.
[3] Z. Norouzi, S. H. Mahmoudi Najafi, and S. A. Mozaffari, “Silver-loaded carbon sphere-in-rod 3D nano-architectures as electrode material for supercapacitors”, Diam. Relat. Mater., 2022, 121, 108734.
[4] Kim J.-H., Zhu K., Yan Y., Perkins C. L., and Frank A. J., “Microstructure and pseudocapacitive properties of electrodes constructed of oriented NiO-TiO2 nanotube arrays”, Nano Lett., 2010, 10(10): 4099.
[5] Su J., Feng X., Sloppy J. D., Guo L., and Grimes C. A., “Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxidecoated glass: synthesis and photoelectrochemical properties”, Nano Lett., 2011, 11(1): 203.
[6] Li J., Zhao W., Huang F., Manivannan A., and Wu N., “Single-crystalline Ni(OH)2 and NiO nanoplatelet arrays as supercapacitor electrodes”, Nanoscale,2011, 3(12): 5103.
[7] Matsui K., Kyotani T., and Tomita A., “Hydrothermal synthesis of single-crystal Ni(OH)2 nanorods in a carbon-coated anodic alumina film”, Adv. Mater., 2002, 14(17): 1216.
[8] Ellis B. L., Knauth P., and Djenizian T., “Three dimensional self‐supported metal oxides for advanced energy storage”, Adv. Mater., 2014, 26(21):3368.
[9] Jiang J., Li Y., Liu J., Huang X., Yuan C., and Lou X. W., “Recent advances in metal oxide‐based electrode architecture design for electrochemical energy storage”, Adv. Mater., 2012, 24(38): 5166.
[10] Xia X., Tu J., Wang X., Gu C., and Zhao X., “Hierarchically porous NiO film grown by chemicalbath deposition via a colloidal crystal template asan electrochemical pseudocapacitor material”, J.Mater. Chem., 2011, 21(3): 671.
[11] Needham S. A., Wang G. X., and Liu H.-K.,“Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries”, J. Power Sources, 2006, 159(1): 254.
[12] Ren W., Zhang H., Guan C., and Cheng C., “Ultrathin MoS2 nanosheets@ metal organic framework‐derived N‐doped carbon nanowall arrays assodium ion battery anode with superior cycling life and rate capability”, Adv. Funct. Mater., 2017,27(32): 1702116.
[13] Wang A., Zhang M., Huang Z., Liu H., Wang Z., Song Z., et al., “High-performance asymmetric supercapacitor based on Co–Mo–S/Co–Mo-LDH nanosheets grown on Co-MOF square tetrahedral structure”, J. Solid State Chem., 2022, 307, 122760.
[14] Narayanan R., “Single step hydrothermal synthesis of carbon nanodot decorated V2O5 nanobelts as hybrid conducting material for supercapacitor application”, J. Solid State Chem., 2017, 253, 103.
[15] Yang C.-H., Chen Y.-C., Wu C.-F., Chung R.-J.,Yougbaré S., and Lin L.-Y., “Novel synthesis of ZIF67-derived MnCo2O4 nanotubes using electrospinning and hydrothermal techniques for supercapacitor”, J. Solid State Chem., 2022, 313, 123351.
[16] Li Y., Zhang T., Li J., Li C., Guo Z., and Ma H.,“Three-dimensional nickel foam templated MgCo2O4 nanowires as an efficient catalyst for thethermal decomposition of ammonium perchlorate”,J. Solid State Chem., 2020, 288, 121426.
[17] Norouzi Z., Mozaffari S. A., and Mahmoudi Najafi S. H., “Three-dimensional unified electrode design using CuO embedded MnO2 Nano-dandelions@Ni(OH)2 nanoflakes as electrode material for high-performance supercapacitors”, J. Alloys Compd., 2023, 938, 168603.
[18] Patil U. M., Gurav K. V, Fulari V. J., LokhandeC. D., and Joo O. S., “Characterization of honeycomb-like ‘β-Ni(OH)2’ thin films synthesized by chemical bath deposition method and their supercapacitor application”, J. Power Sources, 2009,
188(1): 338.
[19] Gomaa M. M., RezaYazdi G., Rodner M., Greczynski G., Boshta M., and Osman M. B. S., et al.,“Exploring NiO nanosize structures for ammoniasensing”, J. Mater. Sci. Mater. Electron., 2018,
29(14): 11870.
[20] Sarkar S., Pradhan M., Sinha A. K., Basu M.,Negishi Y., and Pal T., “An aminolytic approach to ward hierarchical β-Ni(OH)2 nanoporous architectures: A bimodal forum for photocatalytic and surface-enhanced Raman scattering activity”, Inorg.Chem., 2010, 49(19): 8813.
[21] Dong L., Chu Y., and Sun W., “Controllable synthesis of nickel hydroxide and porous nickel oxide nanostructures with different morphologies”,Chem. - A Eur. J., 2008, 14(16): 5064.
[22] Hu J., Zhu K., Chen L., Yang H., Li Z., Suchopar A., et al., “Preparation and surface activity of single‐crystalline NiO (111) nanosheets with hexagonal holes: A semiconductor nanospanner”, Adv.Mater., 2008, 20(2): 267.
[23] Qi Y., Qi H., Lu C., Yang Y., and Zhao Y., “Photoluminescence and magnetic properties of β-Ni(OH)2 nanoplates and NiO nanostructures”, J. Mater. Sci.Mater. Electron., 2009, 20(5): 479.
[24] Bae H. S., Shim E. H., Park J. H., and Jung H.,“Γ-Ray irradiation synthesis and characterization of nickel hydroxide nanoparticles”, J. Phys. Chem.Solids, 2012, 73(12): 1456.
[25] Yang L. X., Zhu Y. J., Tong H., Liang Z. H., Li L., and Zhang L., “Hydrothermal synthesis of nickel hydroxide nanostructures in mixed solvents of water and alcohol”, J. Solid State Chem., 2007,180(7): 2095.
[26] Ni X., Zhao Q., Li B., Cheng J., and Zheng H., “Interconnected β-Ni(OH)2 sheets and their morphology-retained transformation into mesostructured Ni”,Solid State Commun., 2006, 137(11): 585.
[27] Taşköprü T., Zor M., and Turan E., “Structural characterization of nickel oxide/hydroxide nanosheets produced by CBD technique”, Mater.Res. Bull., 2015, 70, 633.
[28] Boschloo G. , and Hagfeldt A., “Spectroelectrochemistry of nanostructured NiO”, J. Phys. Chem.B, 2001, 105(15): 3039.
[29] Moosavifard S. E., Fani S., and Rahmanian M.,“Hierarchical CuCo2S4 hollow nanoneedle arrays as novel binder-free electrodes for high-performance asymmetric supercapacitor,,” Chem. Commun.,2016, 52(24): 4517.
[30] Ma Z., Zhang H., Zhang Y., Zhang J., and Li Z.,“Electrochemical characteristics of nanostructured NiO plates hydrothermally treated on nickel foam for Li-ion storage” Electrochim. Acta, 2015, 176,1427.
[31] Naderi H. R., Sobhani-nasab A., Rahimi-Nasrabadi M., and Ganjali M. R., “Decoration of nitrogen-doped reduced graphene oxide with cobalt tungstate nanoparticles for use in high-performance supercapacitors”, Appl. Surf. Sci., 2017, 423, 1025.
[32] Rahimi-Nasrabadi M., Nader H. R., Karimi M.S., Ahmadi F. , and Pourmortazavi S. M., “Cobalt carbonate and cobalt oxide nanoparticles synthesis,characterization and supercapacitive evaluation”, J.Mater. Sci. Mater. Electron., 2016, 28, 1877.
[33] Naderi H. R., Mortaheb H. R., and Zolfaghari A., “Supercapacitive properties of nanostructured MnO2/exfoliated graphite synthesized by ultrasonic vibration”, J. Electroanal. Chem., 2014, 719, 98.
[34] Hu N., Tang Z., and Shen P. K., “Hierarchical NiO nanobelt film array as an anode for lithium-ion batteries with enhanced electrochemical perfor-mance”, RSC Adv., 2018, 8(47): 26589.
[35] Ju Z., Guo C., Qian Y., Tang B., and Xiong S.,“Direct large-scale synthesis of 3D hierarchical mesoporous NiO microspheres as high-performance anode materials for lithium ion batteries”,Nanoscale, 2014, 6(6): 3268.
[36] Wang C., Zhao Y., Su D., Ding C., Wang L., Yan D., et al., “Synthesis of NiO nano octahedron aggregates as high-performance anode materials forlithium ion batteries”, Electrochim. Acta, 2017,231, 272.
[37] Yang W., Cheng G., Dong C., Bai Q., Chen X.,Peng Z., et al., “NiO nanorod array anchored Ni foam as a binder-free anode for high-rate lithium ion batteries”, J. Mater. Chem. A, 2014, 2(47):20022.
[38] Xu Y., Zhou M., and Lei Y., “Nanoarchitectured array electrodes for rechargeable lithium- and sodium-ion batteries”, Adv. Energy Mater., 2016, 6101.
[39] Asrami P. N., Mozaffari S. A., Tehrani M. S.,and Azar P. A., “A novel impedimetric glucose biosensor based on immobilized glucose oxidase on a CuO-Chitosan nanobiocomposite modified FTO electrode”, Int. J. Biol. Macromol., 2018, 118, 649.
[40] Rahmanian R., Mozaffari S. A., Amoli H. S., and Abedi M., “Development of sensitive impedimetric urea biosensor using DC sputtered Nano-ZnO on TiO2 thin film as a novel hierarchical nanostructure transducer”, Sens Actuators B Chem., 2018, 256,760.
[41] Asrami P. N., Tehrani M. S., Aberoomand Azar P., and Mozaffari S. A., “Impedimetric glucose biosensor based on nanostructure nickel oxide transducer fabricated by reactive RF magnetron sputtering system”, J. Electroanal. Chem., 2017, 801, 258.
[42] S. A. Mozaffari, S. H. Mahmoudi Najafi, and Z.Norouzi, “Hierarchical NiO@Ni(OH)2 nanoarrays as high-performance supercapacitor electrode material,” Electrochim. Acta, 368, 137633, 2021.
[43] Norouzi Z., Mahmoudi Najafi S. H., and Mozaffari S. A., “Facile one-pot synthesis of binder-free MnCo2O4 nanosheets as efficient supercapacitor electrode material”, Prog. Color. Color. Coatings,2023, 16(3): 271.
[44] Hashemi S. A., Mousavi S. M., Naderi H.R., Bahrani S., Arjmand M., Hagfeldt, A., et al.,“Reinforced polypyrrole with 2D graphene flakes decorated with interconnected nickel-tungsten metal oxide complex toward superiorly stable superca-
pacitor”, Chem. Eng. J., 2021, 418, 129396