Implementation of Chitosan modified ultrafiltration hollow fiber as proton exchange membrane of ml-scale microbial fuel cells

Document Type : Research Paper


Chemical Engineering Department, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran.



The study investigated the modification of polyethersulfone (PES), polyvinylidene fluoride (PVDF), and polyacrylonitrile (PAN) hollow fiber membranes using a chitosan solution as the proton exchange membrane for microbial fuel cells (MFCs). Firstly, the performance of the modified PES membrane using 1, 2, and 3% of chitosan in 0.1 M acetic acid coating were inspected. Chitosan coating decreased the internal resistance and enhanced the electricity generation of the MFCs. The maximum power and current densities of 755.202 mW/m2, and 5525.42 mA/m2 were achieved for 3% chitosan-coated PES (PES-3%chi) compared to 629.533 mW/m2 and 3237.79 mA/m2 for pristine PES membrane. Thereafter, application of a 3% chitosan coating over the PAN and PVDF membranes exhibited excessive improvement in the bioelectricity generation and wastewater treatment efficiency of the MFCs. The PAN-3%chi achieved the uppermost power and current densities of 765.147 mW/m2 and 8297.46 mA/m2, which were 1.7 and 2.6 higher than the PAN membrane (450.675 mW/m2 and 3216.56 mA/m2). The electricity generation of the PVDF membrane was enhanced by 5.3 times (337.134 mW/m2 and 2720.16 mA/m2) after the addition of 3% chitosan, likely due to the improvement in hydrophilicity and proton conductivity. The COD removal efficiencies of 42.41, 40.55, and 36.11% were obtained by PAN-3%chi, PES-3%chi, and PVDF-3%chi membranes, respectively, which were 3.53, 4.01, and 5.53 times higher than the values obtained by their pristine unmodified samples.


Main Subjects

[1]. Saran, C., D. Purchase, G.D. Saratale, R.G.Saratale, L.F.R. Ferreira, M. Bilal, H.M. Iqbal,C.M. Hussain, S.I. Mulla, and R.N. Bharagava,2023. Microbial fuel cell: A green eco-friendly agent for tannery wastewater treatment and simultaneous bioelectricity/power generation, Chemosphere, 312, 137072.
[2]. Logan, B.E., 2008.Microbial fuel cells. New Jersey: John Wiley & Sons.
[3]. Palanisamy, G., H.-Y. Jung, T. Sadhasivam, M.D.Kurkuri, S.C. Kim, and S.-H. Roh, 2019. A comprehensive review on microbial fuel cell technologies:Processes, utilization, and advanced developments in electrodes and membranes, Journal of cleaner production, 221, 598-621.
[4]. Logan, B.E., B. Hamelers, R. Rozendal, U. Schroder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, and K. Rabaey, 2006. Microbial fuel cells:methodology and technology, Environmental Science & Technology, 40(17), 5181-92.
[5]. Karimi Alavijeh, M., M.M. Mardanpour, and S.Yaghmaei, 2015. Modeling of Multi-population Microbial Fuel and Electrolysis Cells Based on the Bioanode Potential Conditions, 
[6]. Rahimnejad, M., G. Bakeri, G. Najafpour, M.Ghasemi, and S.-E. Oh, 2014. A review on the effect of proton exchange membranes in microbial fuel cells, Biofuel Research Journal, 1(1), 7-15.
[7]. Shabani, M., H. Younesi, M. Pontié, A. Rahimpour, M. Rahimnejad, and A.A. Zinatizadeh, 2020.A critical review on recent proton exchange membranes applied in microbial fuel cells for renewable energy recovery, Journal of cleaner production,264, 121446.
[8]. Flimban, S.G.A., S.H.A. Hassan, M.M. Rahman, and S.-E. Oh, 2020. The effect of Nafion membrane fouling on the power generation of a microbial fuel cell, International Journal of Hydrogen Energy, 45(25), 13643-13651.
[9]. Yousefi, V., D. Mohebbi-Kalhori, A. Samimi, and M. Salari, 2016. Effect of separator electrode assembly (SEA) design and mode of operation on the performance of continuous tubular microbial fuel cells (MFCs), International Journal of Hydrogen Energy, 41(1), 597-606. ijhydene.2015.11.018.
[10]. Keshavarz, M., D. Mohebbi-Kalhori, and V.Yousefi, 2022. Multi-Response Optimization of Tubular Microbial Fuel Cells Using Response Surface Methodology (RSM), Journal of Renewable Energy and Environment, 9(2), 49-58. 10.30501/
[11]. Cheraghipoor, M., D. Mohebbi-Kalhori, M. Noroozifar, and M.T. Maghsoodlou, 2021. Production of greener energy in microbial fuel cell with ceramic separator fabricated using native soils: Effect of lattice and porous SiO2, Fuel, 284, 118938.
[12]. Yousefi, V., 2022. Statistical investigation of pivotal physical and chemical factors on the performance of ceramic-based microbial fuel cells,Energy Harvesting and Systems, 9(2), 239-252.doi:10.1515/ehs-2021-0073.
[13]. Yousefi, V., D. Mohebbi-Kalhori, and A. Samimi,2017. Ceramic-based microbial fuel cells (MFCs):A review, International Journal of Hydrogen Energy, 42(3), 1672-1690.
[14]. Yousefi, V., D. Mohebbi-Kalhori, and A. Samimi,2018. Application of layer-by-layer assembledchitosan/montmorillonite nanocomposite as oxygen barrier film over the ceramic separator of the micro-
bial fuel cell, Electrochimica Acta, 283, 234-247.
[15]. Yousefi, V., D. Mohebbi-Kalhori, and A. Samimi,2019. Equivalent Electrical Circuit Modeling of Ceramic-Based Microbial Fuel Cells Using the Electrochemical Impedance Spectroscopy (EIS)Analysis, Journal of Renewable Energy and Environment, 6(1), 21-28.
[16]. Yousefi, V., D. Mohebbi-Kalhori, and A. Samimi,2020. Start-up investigation of the self-assembled chitosan/montmorillonite nanocomposite over the ceramic support as a low-cost membrane for microbial fuel cell application, International Journal mof Hydrogen Energy, 45(7), 4804-4820.
[17]. James, A., 2022. Ceramic-microbial fuel cell(C-MFC) for waste water treatment: A mini review, Environmental Research, 210, 112963.
[18]. Yousefi, V., D. Mohebbi-Kalhori, and A. Heydari,2022. Milliliter-scale microbial fuel cell (MFC)fabricated by polyethersulfone (PES) hollow fiber membrane, Chemical Process Design, 1(2), 14-21.10.22111/cpd.2022.43362.1005.
[19]. Hameed, A.Z., S.A. Raj, J. Kandasamy, M.A.Baghdadi, and M.A. Shahzad, 2022. Chitosan: A sustainable material for multifarious applications,Polymers, 14(12), 2335.
[20]. Ikram, R., B. Mohamed Jan, M. Abdul Qadir, A.Sidek, M.M. Stylianakis, and G. Kenanakis, 2021.Recent advances in chitin and chitosan/graphene based bio-nanocomposites for energetic applications, Polymers, 13(19), 3266.
[21]. Muhmed, S., N.A.M. Nor, J. Jaafar, A. Ismail, M. Othman, M.A. Rahman, F. Aziz, and N. Yusof, 2020. Emerging chitosan and cellulose green materials for ion exchange membrane fuel cell: a review,Energy, Ecology and Environment, 5, 85-107.
[22]. Darder, M., M. Colilla, and E. Ruiz-Hitzky,2005. Chitosan–clay nanocomposites: application as electrochemical sensors, Applied Clay Science, 28(1), 199-208.
[23]. Rezaei, F., V. Yousefi, D. Mohebbi-Kalhori,and A. Samimi, 2023. Performance evaluation of novel ml-scale microbial fuel cells using different polymeric hollow-fiber membranes, Journal of Water Process Engineering, 55, 104064.
[24]. Bond, D.R. and D.R. Lovley, 2003. Electricity production by Geobacter sulfurreducens attached to electrodes, Appl Environ Microbiol, 69(3), 1548-55. 10.1128/aem.69.3.1548-1555.2003.
[25]. Rahimi, M., S.M. Sadrameli, H. Mohammad poor, H. Kazerouni, and M.D. Ghaffari, 2018. Sulfurous Analysis of Bioelectricity Generation frosulfate-reducing Bacteria (SRB) in a Microbial Fuel Cell, Hydrogen, Fuel Cell & Energy Storage,
4(4), 307-321. 10.22104/ijhfc.2018.2684.1161.
[26]. Saratale, G.D., R.G. Saratale, M.K. Shahid, G. Zhen, G. Kumar, H.-S. Shin, Y.-G. Choi, and S.H. Kim, 2017. A comprehensive overview on electro-active biofilms, role of exo-electrogens and their microbial niches in microbial fuel cells (MFCs), Chemosphere, 178, 534-547.
[27]. Angelaalincy, M.J., R. Navanietha Krishnaraj, G.Shakambari, B. Ashokkumar, S. Kathiresan, and P.Varalakshmi, 2018. Biofilm engineering approaches for improving the performance of microbial fuel cells and bioelectrochemical systems, Frontiers in Energy Research, 6, 63.
[28]. Ghaemi, N., P. Daraei, and F.S. Akhlaghi, 2018.Polyethersulfone nanofiltration membrane embedded by chitosan nanoparticles: Fabrication, characterization and performance in nitrate removal from water, Carbohydrate Polymers, 191, 142-151.
[29]. Abriyanto, H., H. Susanto, T. Maharani, A.M.I.Filardli, R. Desiriani, and N. Aryanti, 2022. Synergistic Effect of Chitosan and Metal Oxide Additives on Improving the Organic and Biofouling Resistance of Polyethersulfone Ultrafiltration
Membranes, ACS Omega, 7(50), 46066-46078.10.1021/acsomega.2c03685.
[30]. Gafri, H.F., F.M. Zuki, M.K. Aroua, and M.M.Bello, 2019. Enhancing the Anti-biofouling Properties of Polyethersulfone Membrane Using Chitosan-Powder Activated Carbon Composite, Journal of Polymers and the Environment, 27(10),
2156-2166. 10.1007/s10924-019-01505-z.
[31]. Koók, L., P. Bakonyi, F. Harnisch, J. Kretzschmar, K.-J. Chae, G. Zhen, G. Kumar, T. Rózsenberszki, G. Tóth, N. Nemestóthy, and K. Bélafi-Bakó, 2019. Biofouling of membranes in microbial electrochemical technologies: Causes,
characterization methods and mitigation strategies,Bioresource Technology, 279, 327-338. https://doi.
[32]. Khalili, H.-B., D. Mohebbi-Kalhori, and M.S.Afarani, 2017. Microbial fuel cell (MFC) using commercially available unglazed ceramic wares:Low-cost ceramic separators suitable for scaleup, International Journal of Hydrogen Energy,
42(12), 8233-8241.
[33]. Zinadini, S., A.A. Zinatizadeh, M. Rahimi, V.Vatanpour, and Z. Rahimi, 2017. High power generation and COD removal in a microbial fuel cell operated by a novel sulfonated PES/PES blend proton exchange membrane, Energy, 125, 427-438.
[34]. Rahimnejad, M., M. Ghasemi, G.D. Najafpour,M. Ismail, A.W. Mohammad, A.A. Ghoreyshi, and S.H.A. Hassan, 2012. Synthesis, characterization and application studies of self-made Fe3O4/PES nanocomposite membranes in microbial fuel cell,Electrochimica Acta, 85, 700-706.
[35]. Di Palma, L., I. Bavasso, F. Sarasini, J. Tirillò, D. Puglia, F. Dominici, and L. Torre, 2018. Synthesis, characterization and performance evaluation of Fe3O4/PES nano composite membranes for microbial fuel cell, European Polymer Journal,
99, 222-229.