1] Denholm P, Ela E, Kirby B, Milligan M. The Role of Energy Storage with Renewable Electricity Generation; 2010. Available from: http://www.osti.gov/bridge.
[2] Divya KC, Østergaard J. Battery energy storage technology for power systems-An overview; 2009.
[3] Stecca M, Elizondo LR, Soeiro TB, Bauer P, Palensky P. A comprehensive review of the integration of battery energy storage systems into distribution networks. Institute of Electrical and Electronics Engineers Inc.; 2020.
[4] G SMM, Nikdel M. Various battery models for various simulation studies and applications; 2014.
[5] Westerhoff U, Kurbach K, Lienesch F, Kurrat M. Analysis of Lithium-Ion Battery Models Based on Electrochemical Impedance Spectroscopy. Energy Technology. 2016 12;4:1620–1630.
[6] Seaman A, Dao TS, McPhee J. A survey of mathematics-based equivalent-circuit and electrochemical battery models for hybrid and electric vehicle simulation. Elsevier B.V.; 2014.
[7] Zhou W, Zheng Y, Pan Z, Lu Q. Review on the battery model and SOC estimation method. MDPI; 2021.
[8] Tamilselvi S, Gunasundari S, Karuppiah N, Rk AR, Madhusudan S, Nagarajan VM, et al.. A review on battery modelling techniques. MDPI; 2021.
[9] Wang S, Zhang J, Gharbi O, Vivier V, Gao M, Orazem ME. Electrochemical impedance spectroscopy. Springer Nature; 2021.
[10] Allen J Bard, Larry R Faulkner HSW. Electrochemical Methods - Book 3th Edition. vol. 6; 2022. Available from: https://www.wiley.com/en-ae/Electrochemical+Methods%3A+Fundamentals+and+Applications%2C+3rd+Edition-p-9781119334057.
[11] Li D, Lin C, Batchelor-McAuley C, Chen L, Compton RG. Tafel analysis in practice. Journal of Electroanalytical Chemistry. 2018 10;826:117–124.
[12] Corva M, Blanc N, Bondue CJ, Tschulik K. Differential Tafel Analysis: A Quick and Robust Tool to Inspect and Benchmark Charge Transfer in Electrocatalysis. American Chemical Society; 2022.
[13] Khadke P, Tichter T, Boettcher T, Muench F, Ensinger W, Roth C. A simple and effective method for the accurate extraction of kinetic parameters using differential Tafel plots. Scientific reports. 2021 4;11:8974.
[14] Becker M, Bredemeyer N, Tenhumberg N, Turek T. Kinetic studies at carbon felt electrodes for vanadium redox-flow batteries under controlled transfer current density conditions. Electrochimica Acta. 2017 10;252:12–24.
[15] Liu Y, Xu X, Sadd M, Kapitanova OO, Krivchenko VA, Ban J, et al. Insight into the Critical Role of Exchange Current Density on Electrodeposition Behavior of Lithium Metal. Advanced Science. 2021 3;8.
[16] Dr Evgenij Barsoukov DJRM. Impedance Spectroscopy. Barsoukov E, Macdonald JR, editors. Wiley; 2018. Available
from: http://doi.wiley.com/10.1002/9781119381860https://onlinelibrary.wiley.com/doi/book/10.1002/9781119381860.
[17] Lee H, Yang S, Kim S, Song J, Park J, Doh CH, et al.. Understanding the effects of diffusion coefficient and exchange current density on the electrochemical model of lithium-ion batteries. Elsevier B.V.; 2022.
[18] Murbach MD, Schwartz DT. Analysis of LiIon Battery Electrochemical Impedance Spectroscopy Data: An Easy-to-Implement Approach for Physics-Based Parameter Estimation Using an Open-Source Tool. Journal of The Electrochemical Society. 2018;165:A297–A304.
[19] Wang L, Zhao J, He X, Gao J, Li J, Wan C, et al.. Electrochemical Impedance Spectroscopy (EIS) Study of LiNi 1/3 Co 1/3 Mn 1/3 O 2 for Li-ion Batteries; 2012. Available from: www.electrochemsci.org.
[20] Meddings N, Heinrich M, Overney F, Lee JS, Ruiz V, Napolitano E, et al.. Application of electrochemical impedance spectroscopy to commercial Li-ion cells: A review. Elsevier B.V.; 2020.
[21] Malifarge S, Delobel B, Delacourt C. Guidelines for the Analysis of Data from the Potentiostatic Intermittent Titration Technique on Battery Electrodes. Journal of The Electrochemical Society. 2017;164:A3925–A3932.
[22] Li W, Zhang J, Ringbeck F, J¨ost D, Zhang L, Wei Z, et al. Physics-informed neural networks for electrode-level state estimation in lithium-ion batteries. Journal of Power Sources. 2021 9;506.
[23] Li W, Demir I, Cao D, J¨ost D, Ringbeck F, Junker M, et al. Data-driven systematic parameter identification of an electrochemical model for lithiumion batteries with artificial intelligence. Energy Storage Materials. 2022 1;44:557–570.
[24] Xue C, Jiang B, Zhu J, Wei X, Dai H. An Enhanced Single-Particle Model Using a PhysicsInformed Neural Network Considering Electrolyte Dynamics for Lithium-Ion Batteries. Batteries. 2023 10;9.
[25] Zheng Q, Yin X, Zhang D. State-space modeling for electrochemical performance of Li-ion batteries with physics-informed deep operator networks. Journal of Energy Storage. 2023 12;73.
[26] Singh S, Ebongue YE, Rezaei S, Birke KP. Hybrid Modeling of Lithium-Ion Battery: PhysicsInformed Neural Network for Battery State Estimation. Batteries. 2023;9(6).
[27] Ji S, Zhu J, Yang Y, dos Reis G, Zhang Z. DataDriven Battery Characterization and Prognosis: Recent Progress, Challenges, and Prospects. Small Methods. 2024;2301021:1–17.
[28] Ji S, Zhu J, Yang Y, dos Reis G, Zhang Z. DataDriven Battery Characterization and Prognosis: Recent Progress, Challenges, and Prospects. John Wiley and Sons Inc; 2024.
[29] Torabi F, Ahmadi P. Simulation of battery systems: Fundamentals and applications. Simulation of Battery Systems: Fundamentals and Applications. 2019;p. 1–409.
[30] Esfahanian V, Torabi F. Numerical simulation of lead-acid batteries using Keller-Box method. Journal of Power Sources. 2006;158(2 SPEC. ISS.):949–952.
[31] Esfahanian V, Torabi F, Afzali R. Engineering Simulation of Lead-acid Cell Characteristics and Processes in Batteries. 8th ISAEST Conference, India. 2006;p. 1–12.
[32] Esfahanian V, Ansari AB, Torabi F. Simulation of lead-acid battery using model order reduction. vol. 279. Elsevier Ltd; 2015. Available from: http://dx.doi.org/10.1016/j.jpowsour.2014.12.149.
[33] Ansari AB, Esfahanian V, Torabi F. Discharge, rest and charge simulation of leadacid batteries using an efficient reduced order model based on proper orthogonal decomposition. Applied Energy. 2016;173:152–167. Available from:
http://dx.doi.org/10.1016/j.apenergy.2016.04.008.
[34] Esfahanian V, Shahbazi AA, Torabi F. A realtime battery engine simulation tool (BEST) based on lumped model and reduced-order modes: Application to lead-acid battery. Journal of Energy Storage. 2019;24(May):100780. Available
from: https://doi.org/10.1016/j.est.2019.100780.
[35] Ansari AB, Esfahanian V, Torabi F. Thermalelectrochemical simulation of lead-acid battery using reduced-order model based on proper orthogonal decomposition for real-time monitoring purposes. Journal of Energy Storage. 2021;44.
[36] Esfahanian V, Torabi F. Study of Thermal–Runaway in Batteries I. Theoretical Study and Formulation. Journal of The Electrochemical Society. 2011;.
[37] Kitaronka S, Universitesi S. LEAD-AC ¨ ˙ID BATTERY; 2022. Available from: https://www.researchgate.net/publication/357913548.