[1] Weiss M, Ruess R, Kasnatscheew J, Levartovsky Y, Levy NR, Minnmann P, et al. Fast charging of lithium-ion batteries: a review of materials aspects. Advanced Energy Materials. 2021;11(33):2101126.
[2] Nzereogu P, Omah A, Ezema F, Iwuoha E, Nwanya A. Anode materials for lithium-ion batteries: A review. Applied Surface Science Advances. 2022;9:100233.
[3] Kulova TL, Fateev VN, Seregina EA, Grigoriev AS. A brief review of post-lithium-ion batteries. International Journal of Electrochemical Science. 2020;15(8):7242–7259.
[4] Tao T, Lu S, Chen Y. A review of advanced flexible lithium-ion batteries. Advanced materials technologies. 2018;3(9):1700375.
[5] Kim T, Song W, Son DY, Ono LK, Qi Y. Lithiumion batteries: outlook on present, future, and hybridized technologies. Journal of materials chemistry A. 2019;7(7):2942–2964.
[6] Guo W, Sun Z, Vilsen SB, Meng J, Stroe DI. Review of “grey box” lifetime modeling for lithium-ion battery: Combining physics and data-driven methods. Journal of Energy Storage. 2022;56:105992.
[7] Laue V, R¨oder F, Krewer U. Practical identifiability of electrochemical P2D models for lithiumion batteries. Journal of Applied Electrochemistry. 2021;51(9):1253–1265.
[8] Alkhedher M, Al Tahhan AB, Yousaf J, Ghazal M, Shahbazian-Yassar R, Ramadan M. Electrochemical and thermal modeling of lithium-ion batteries: A review of coupled approaches for improved thermal performance and safety lithium-ion batteries. Journal of Energy Storage. 2024;86:111172.
[9] Kim K, Lee G, Chun H, Baek J, Pyeon H, Kim M, et al. Electrochemical–mechanical coupled model for computationally efficient prediction of longterm capacity fade of lithium-ion batteries. Journal of Energy Storage. 2024;86:111224.
[10] Fan C, Liu K, Ren Y, Peng Q. Characterization and identification towards dynamic-based electrical modeling of lithium-ion batteries. Journal of Energy Chemistry. 2024;92:738–758.
[11] Liu K, Gao Y, Zhu C, Li K, Fei M, Peng C, et al. Electrochemical modeling and parameterization towards control-oriented management of lithium-ion batteries. Control Engineering Practice. 2022;124:105176.
[12] Hosseininasab S, Lin C, Pischinger S, Stapelbroek M, Vagnoni G. State-of-health estimation of lithium-ion batteries for electrified vehicles using a reduced-order electrochemical model. Journal of Energy Storage. 2022;52:104684.
[13] Rojas C, Oca L, Lopetegi I, Iraola U, Carrasco J. A critical look at efficient parameter estimation methodologies of electrochemical models for Lithium-Ion cells. Journal of Energy Storage. 2024;80:110384.
[14] You HW, Bae JI, Cho SJ, Lee JM, Kim SH. Analysis of equivalent circuit models in lithium-ion batteries. AIP Advances. 2018;8(12).
[15] Zhang L, Peng H, Ning Z, Mu Z, Sun C. Comparative research on RC equivalent circuit models for lithium-ion batteries of electric vehicles. Applied Sciences. 2017;7(10):1002.
[16] Graule A, Oehler F, Schmitt J, Li J, Jossen A. Development and evaluation of a physicochemical equivalent circuit model for lithium-ion batteries. Journal of The Electrochemical Society. 2024;171(2):020503.
[17] Antony AJ, Selvajyothi K. A comparative performance analysis of electrical equivalent circuit models with the hysteresis effect of lithium iron phosphate batteries. International Journal of Green Energy. 2024;21(7):1476–1499.
[18] Amir S, Gulzar M, Tarar MO, Naqvi IH, Zaffar NA, Pecht MG. Dynamic equivalent circuit model to estimate state-of-health of lithium-ion batteries. IEEE Access. 2022;10:18279–18288.
[19] Khaleghi S, Hosen MS, Karimi D, Behi H, Beheshti SH, Van Mierlo J, et al. Developing an online data-driven approach for prognostics and health management of lithium-ion batteries. Applied Energy. 2022;308:118348.
[20] Wang S, Jin S, Bai D, Fan Y, Shi H, Fernandez C. A critical review of improved deep learning methods for the remaining useful life prediction of lithium-ion batteries. Energy Reports. 2021;7:5562–5574.
[21] Lin M, Yan C, Wang W, Dong G, Meng J, Wu J. A data-driven approach for estimating state-ofhealth of lithium-ion batteries considering internal resistance. Energy. 2023;277:127675.
[22] Khumprom P, Yodo N. A data-driven predictive prognostic model for lithium-ion batteries based on a deep learning algorithm. Energies. 2019;12(4):660.
[23] Abu-Seif MA, Abdel-Khalik AS, Hamad MS, Hamdan E, Elmalhy NA. Data-Driven modeling for Li-ion battery using dynamic mode decomposition. Alexandria Engineering Journal. 2022;61(12):11277–11290.
[24] Dao TS, Vyasarayani CP, McPhee J. Simplification and order reduction of lithium-ion battery model based on porous-electrode theory. Journal of Power Sources. 2012;198:329–337.
[25] Versteeg HK. An introduction to computational fluid dynamics the finite volume method, 2/E. Pearson Education India; 2007.
[26] Doyle M, Fuller TF, Newman J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. Journal of the Electrochemical society. 1993;140(6):1526.