(1) Ayabe S, Omoto H, Utaka T, Sasaki K, Kikuchi R, Teraoka Y, Eguchi K. Catalytic autothermal reforming of methane and propane over supported metal catalysts. Applied Catalysis A: General, 2003, 241: 261-269.
(2) Li J, Wang H. Study on CO2 reforming of methane to syngas over Al2O3–ZrO2 supported Ni catalysts prepared via a direct sol–gel process. Chemical Eng. Science, 2004, 59: 4861-4867.
(3) Ruiz J, Passos F, Bueno J, Souza-Aguiar E, Mattos L, Noronha F. Syngas production by autothermal reforming of methane on supported platinum catalysts. Applied Catalysis A: General, 2008, 334: 259-267.
(4) Yoshida K, Begum N, Ito S, Tomishige K. Oxidative steam reforming of methane over Ni/α-Al2O3 modified with trace noble metals. Applied Catalysis A: General, 2009, 358: 186-192.
(5) Al–Fatish A, Fakeeha A.H, Soliman M.A, Siddiqui H, Abasaeed A.E. Coke formation during CO2 reforming of CH4 over alumina-supported nickel catalysts. Applied Catalysis A: General, 2009, 364: 150-155.
(6) Rostrup-Nielsen B.M. Catalytic Steam Reforming. Catalysis Science and Technology. Springer-Verlag, Berlin, 1984, pp. 1-13.
(7) Rostrup-Nielsen R.N.JR. Activity of nickel catalysts for steam reforming of hydrocarbons. Journal of Catalysis, 1973, 31: 173-199.
(8) Lisboa J, Santos D, Passos F, Noronha F. Influence of the addition of promoters to steam reforming catalysts. Catalysis Today, 2005, 101: 15-21.
(9) Laosiripojana N, Charojrochkul S, Assabumrungrat S. Steam reforming of LPG over Ni and Rh supported on Gd-CeO2 and Al2O3: Effect of support and feed composition. Fuel, 2011, 90: 136-141.
(10) Wang W, Ran R, Su C, Shao Z, Jung D.W, Seo S, Lee S.M. Effect of nickel content and preparation method on the performance of Ni-Al2O3 towards the applications in solid oxide fuel cells. International journal of hydrogen energy, 2011, 36: 10958-10967.
(11) Li B, Watanabe R, Maruyama K, Kunimori K, Tomishige K. Thermographical observation of catalyst bed temperature in steam reforming of methane over Ni supported on α-alumina granules: Effect of Ni precursors. Catalysis Today, 2005, 104: 7-14.
(12) Ahmet D, L.T, Avci K. Hydrogen production by steam reforming of n-Butane over supported Ni and Pt-Ni catalysts. Applied Catalysis, 2004, 258: 235-240.
(13) Jung Y.S, Yoon W.L, Lee T.W, Rhee Y.W, Seo Y.S. A highly active Ni-Al2O3 catalyst prepared by homogeneous precipitation using urea for internal reforming in a molten carbonate fuel cell (MCFC): Effect of the synthesis temperature. International Journal of Hydrogen Energy, 2010, 35: 11237-11244.
(14) Montgomery D.C. Design and Analysis of Experiments, 5th edition, Wiley: New York, 2011, pp. 427-510-.
(15) Zaherian A, Kazemeini M, Aghaziarati M, Alamolhoda S. Synthesis of highly porous nanocrystalline alumina as a robust catalyst for dehydration of methanol to dimethyl ether. Journal of Porous Materials, 2013, 20: 151-157.
(16) Wetwatana U, Kim-Lohsoontorn P, Assabumrungrat S, Laosiripojana N. Catalytic Steam and Auto-thermal Reforming of Used Lubricating Oil (ULO) over Rh- and Ni-Based Catalysts. Industrial & Engineering Chemistry Research, 2010, 49(21): 10981-10985.
(17) Dokmaingam P, Palikanon T, Laosiripojana N. Effects of H2S, CO2, and O2 on Catalytic Methane Steam Reforming over Ni/CeO2 and Ni/Al2O3 Catalysts. KMUTT Research & Development Journal, 2007, 30(1): 35-47.
(18) Chen Y, Cui P, Xiong G, Xu H. Novel nickel-based catalyst for low temperature hydrogen production from methane steam reforming in membrane reformer. Asia-Pacific Journal of Chemical Engineering, 2010, 5: 93-100.
(19) Selim M.M, El-Maksoud I.H.A. Spectroscopic and catalytic characterization of Ni nano-size catalyst for edible oil hydrogenation. Microporous and Mesoporous Materials, 2005, 85: 273-278.