1. McLarty, D., Brouwer, J., and Ainscough, C., "Economic analysis of fuel cell installations at commercial buildings including regional pricing and complementary technologies", Energy and Buildings, 2016, 113: 112.
2. Wu, H.-W., "A review of recent development: Transport and performance modeling of PEM fuel cells", Applied Energy, 2016, 165: 81.
3. Kim, J. and Kim, T., "Compact PEM fuel cell system combined with all-in-one hydrogen generator using chemical hydride as a hydrogen source", Applied Energy, 2015, 160: 945.
4. Kim, D.H., Kim, S.H., and Byun, J.Y., "A microreactor with metallic catalyst support for hydrogen production by partial oxidation of dimethyl ether", Chemical Engineering Journal, 2015, 280: 468.
5. Takeishi, K. and Akaike, Y., "Hydrogen production by dimethyl ether steam reforming over copper alumina catalysts prepared using the sol-gel method", Applied Catalysis A: General, 2016, 510: 20.
6. Carvalho, F.L.S., Asencios, Y.J.O., Bellido, J.D.A., and Assaf, E.M., "Bio-ethanol steam reforming for hydrogen production over Co3O4/CeO2 catalysts synthesized by one-step polymerization method", Fuel Processing Technology, 2016, 142: 182.
7. Ma, H., Zeng, L., Tian, H., Li, D., Wang, X., Li, X., and Gong, J., "Efficient hydrogen production from ethanol steam reforming over La-modified ordered mesoporous Ni-based catalysts", Applied Catalysis B: Environmental, 2016, 181: 321.
8. Matsumura, Y., "Durable Cu composite catalyst for hydrogen production by high temperature methanol steam reforming", Journal of Power Sources, 2014, 272: 961.
9. Mironova, E.Y., Lytkina, A.A., Ermilova, M.M., Efimov, M.N., Zemtsov, L.M., Orekhova, N.V., Karpacheva, G.P., Bondarenko, G.N., Muraviev, D.N., and Yaroslavtsev, A.B., "Ethanol and methanol steam reforming on transition metal catalysts supported on detonation synthesis nanodiamonds for hydrogen production", International Journal of Hydrogen Energy, 2015, 40: 3557.
10. Shokrani, R., Haghighi, M., Jodeiri, N., Ajamein, H., and Abdollahifar, M., "Fuel cell grade hydrogen production via methanol steam reforming over CuO/ZnO/Al2O3 nanocatalyst with various oxide ratios synthesized via urea-nitrates combustion method", International Journal of Hydrogen Energy, 2014, 39: 13141.
11. Baneshi, J., Haghighi, M., Jodeiri, N., Abdollahifar, M., and Ajamein, H., "Homogeneous precipitation synthesis of CuO-ZrO2-CeO2-Al2O3 nanocatalyst used in hydrogen production via methanol steam reforming for fuel cell applications", Energy Conversion and Management, 2014, 87: 928.
12. Chen, W.-H. and Lin, B.-J., "Hydrogen production and thermal behavior of methanol autothermal reforming and steam reforming triggered by microwave heating", International Journal of Hydrogen Energy, 2013, 38: 9973.
13. Katiyar, N., Kumar, S., and Kumar, S., "Comparative thermodynamic analysis of adsorption, membrane and adsorption-membrane hybrid reactor systems for methanol steam reforming", International Journal of Hydrogen Energy, 2013, 38: 1363.
14. Matsumura, Y., "Stabilization of Cu/ZnO/ZrO2 catalyst for methanol steam reforming to hydrogen by coprecipitation on zirconia support", Journal of Power Sources, 2013, 238: 109.
15. Zhang, L., Pan, L., Ni, C., Sun, T., Zhao, S., Wang, S., Wang, A., and Hu, Y., "CeO2-ZrO2-promoted CuO/ZnO catalyst for methanol steam reforming", International Journal of Hydrogen Energy, 2013, 38: 4397.
16. Das, D., Llorca, J., Dominguez, M., Colussi, S., Trovarelli, A., and Gayen, A., "Methanol steam reforming behavior of copper impregnated over CeO2-ZrO2 derived from a surfactant assisted coprecipitation route", International Journal of Hydrogen Energy, 2015, 40: 10463.
17. Zhang, L., Pan, L.-w., Ni, C.-j., Sun, T.-j., Wang, S.-d., Hu, Y.-k., Wang, A.-j., and Zhao, S.-s., "Effects of precipitation aging time on the performance of CuO/ZnO/CeO2-ZrO2 for methanol steam reforming", Journal of Fuel Chemistry and Technology, 2013, 41: 883.
18. Behrens, M., "Coprecipitation: An excellent tool for the synthesis of supported metal catalysts - From the understanding of the well known recipes to new materials", Catalysis Today, 2015, 246: 46.
19. Aruna, S.T. and Mukasyan, A.S., "Combustion synthesis and nanomaterials", Current Opinion in Solid State and Materials Science, 2008, 12: 44.
20. Mukasyan, A.S., Rogachev, A.S., and Aruna, S.T., "Combustion synthesis in nanostructured reactive systems", Advanced Powder Technology, 2015, 26: 954.
21. González-Cortés, S.L. and Imbert, F.E., "Fundamentals, properties and applications of solid catalysts prepared by solution combustion synthesis (SCS)", Applied Catalysis A: General, 2013, 452: 117.
22. Liu, G., Li, J., and Chen, K., "Combustion synthesis of refractory and hard materials: A review", International Journal of Refractory Metals and Hard Materials, 2013, 39: 90.
23. Baneshi, J., Haghighi, M., Jodeiri, N., Abdollahifar, M., and Ajamein, H., "Urea-nitrate combustion synthesis of ZrO2 and CeO2 doped CuO/Al2O3 nanocatalyst used in steam reforming of biomethanol for hydrogen production", Ceramics International, 2014, 40: 14177.
24. Srinatha, N., Dinesh Kumar, V., Nair, K.G.M., and Angadi, B., "The effect of fuel and fuel-oxidizer combinations on ZnO nanoparticles synthesized by solution combustion technique", Advanced Powder Technology, 2015, 26: 1355.
25. Tarragó, D.P., Malfatti, C.d.F., and de Sousa, V.C., "Influence of fuel on morphology of LSM powders obtained by solution combustion synthesis", Powder Technology, 2015, 269: 481.
26. Esmaeili, E., Khodadadi, A., and Mortazavi, Y., "Microwave-induced combustion process variables for MgO nanoparticle synthesis using polyethylene glycol and sorbitol", Journal of the European Ceramic Society, 2009, 29: 1061.
27. Gao, Y., Meng, F., Ji, K., Song, Y., and Li, Z., "Slurry phase methanation of carbon monoxide over nanosized Ni-Al2O3 catalysts prepared by microwave-assisted solution combustion", Applied Catalysis A: General, 2016, 510: 74.
28. Li, F.-t., Zhao, Y., Liu, Y., Hao, Y.-j., Liu, R.-h., and Zhao, D.-s., "Solution combustion synthesis and visible light-induced photocatalytic activity of mixed amorphous and crystalline MgAl2O4 nanopowders", Chemical Engineering Journal, 2011, 173: 750.
29. Nassar, M.Y., Ahmed, I.S., and Samir, I., "A novel synthetic route for magnesium aluminate (MgAl2O4) nanoparticles using sol-gel auto combustion method and their photocatalytic properties", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 131: 329.
30. Ruiz-Gómez, M.A., Gómez-Solís, C., Zarazúa-Morín, M.E., Torres-Martínez, L.M., Juárez-Ramírez, I., Sánchez-Martínez, D., and Figueroa-Torres, M.Z., "Innovative solvo-combustion route for the rapid synthesis of MoO3 and Sm2O3 materials", Ceramics International, 2014, 40: 1893.
31. Scherrer, P., "Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen", Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen, 1918, 26: 98.
32. Allahyari, S., Haghighi, M., Ebadi, A., and Qavam Saeedi, H., "Direct synthesis of dimethyl ether as a green fuel from syngas over nanostructured CuO-ZnO-Al2O3/HZSM-5 catalyst: Influence of irradiation time on nanocatalyst properties and catalytic performance", Journal of Power Sources, 2014, 272: 929.
33. Allahyari, S., Haghighi, M., and Ebadi, A., "Direct synthesis of DME over nanostructured CuO-ZnO-Al2O3/HZSM-5 catalyst washcoated on high pressure microreactor: Effect of catalyst loading and process condition on reactor performance", Chemical Engineering Journal, 2015, 262: 1175.
34. Abramoff, M.D., Magalhaes, P.J., and Ram, S.J., "Image Processing with ImageJ", Biophotonics International, 2004, 11: 36−42.
35. Estifaee, P., Haghighi, M., Mohammadi, N., and Rahmani, F., "CO oxidation over sonochemically synthesized Pd-Cu/Al2O3 nanocatalyst used in hydrogen purification: Effect of Pd loading and ultrasound irradiation time", Ultrasonics Sonochemistry, 2014, 21: 1155.
36. Khoshbin, R., Haghighi, M., and Asgari, N., "Direct synthesis of dimethyl ether on the admixed nanocatalystsof CuO-ZnO-Al2O3 and HNO3-modified clinoptilolite at high pressures: Surface properties and catalytic performance", Materials Research Bulletin, 2013, 48: 767.
37. Allahyari, S., Haghighi, M., Ebadi, A., and Hosseinzadeh, S., "Effect of irradiation power and time on ultrasound assisted co-precipitation of nanostructured CuO-ZnO-Al2O3 over HZSM-5 used for direct conversion of syngas to DME as a green fuel", Energy Conversion and Management, 2014, 83: 212.
38. Allahyari, S., Haghighi, M., and Ebadi, A., "Direct conversion of syngas to DME as a green fuel in a high pressure microreactor: Influence of slurry solid content on characteristics and reactivity of washcoated CuO-ZnO-Al2O3/HZSM-5 nanocatalyst", Chemical Engineering and Processing: Process Intensification, 2014, 86: 53.
39. Charghand, M., Haghighi, M., and Aghamohammadi, S., "The Beneficial Use of Ultrasound in Synthesis of Nanostructured Ce-Doped SAPO-34 Used in Methanol Conversion to Light Olefins", Ultrasonics Sonochemistry, 2014, 21: 1827.
40. Sajjadi, S.M., Haghighi, M., and Rahmani, F., "Dry Reforming of Greenhouse Gases CH4/CO2 over MgO-Promoted Ni-Co/Al2O3-ZrO2 Nanocatalyst: Effect of MgO Addition via Sol-Gel Method on Catalytic Properties and Hydrogen Yield", J Sol-Gel Sci Technol, 2014, 70: 111.
41. Khoshbin, R. and Haghighi, M., "Urea-Nitrate Combustion Synthesis and Physicochemical Characterization of CuO-ZnO-Al2O3 Nanoparticles over HZSM-5", Chinese Journal of Inorganic Chemistry, 2012, 28: 1967.
42. Aghaei, E. and Haghighi, M., "Effect of Crystallization Time on Properties and Catalytic Performance of Nanostructured SAPO-34 Molecular Sieve Synthesized at High Temperatures for Conversion of Methanol to Light Olefins", Powder Technology, 2015, 269: 358.
43. Asgari, N., Haghighi, M., and Shafiei, S., "Synthesis and Physicochemical Characterization of Nanostructured CeO2/Clinoptilolite for Catalytic Total Oxidation of Xylene at Low Temperature", Environmental Progress and Sustainable Energy, 2013, 32: 587.
44. Saedy, S., Haghighi, M., and Amirkhosrow, M., "Hydrothermal synthesis and physicochemical characterization of CuO/ZnO/Al2O3 nanopowder. Part I: Effect of crystallization time", Particuology, 2012, 10: 729.
45. Rahmani, F., Haghighi, M., Vafaeian, Y., and Estifaee, P., "Hydrogen Production via CO2 Reforming of Methane over ZrO2-Doped Ni/ZSM-5 Nanostructured Catalyst Prepared by Ultrasound Assisted Sequential Impregnation Method", Journal of Power Sources, 2014, 272: 816.
46. Sharifi, M., Haghighi, M., and Abdollahifar, M., "Hydrogen Production via Reforming of Biogas over Nanostructured Ni/Y Catalyst: Effect of Ultrasound Irradiation and Ni-Content on Catalyst Properties and Performance", Materials Research Bulletin, 2014, 60: 328.
47. Wang, C., Liu, C., Fu, W., Bao, Z., Zhang, J., Ding, W., Chou, K., and Li, Q., "The water-gas shift reaction for hydrogen production from coke oven gas over Cu/ZnO/Al2O3 catalyst", Catalysis Today, 2016, 263: 46.
48. Wilkinson, S.K., van de Water, L.G.A., Miller, B., Simmons, M.J.H., Stitt, E.H., and Watson, M.J., "Understanding the generation of methanol synthesis and water gas shift activity over copper-based catalysts – A spatially resolved experimental kinetic study using steady and non-steady state operation under CO/CO2/H2 feeds", Journal of Catalysis, 2016, 337: 208.
49. Lin, S., Johnson, R.S., Smith, G.K., Xie, D., and Guo, H., "Pathways for methanol steam reforming involving adsorbed formaldehyde and hydroxyl intermediates on Cu (111): density functional theory studies", Physical Chemistry Chemical Physics, 2011, 13: 9622.
50. Karelovic, A. and Ruiz, P., "The role of copper particle size in low pressure methanol synthesis via CO2 hydrogenation over Cu/ZnO catalysts", Catalysis Science & Technology, 2015, 5: 869.