[1] Lund H., “Renewable energy strategies for sustainable development”, Energy, 2007, 32: 912.
[2] Herring H., “Energy efficiency-a critical view”, Energy, 2006, 31: 10.
[4] Srinivasan S., “Fuel cells: from fundamentals to applications”, Springer, 2006.
[6] Carrette L., Friedrich K.A., Stimming U., “Fuel Cells: Principles, Types, Fuels, and Application”, Chem. Phys. Chem, 2000, 4: 162.
[7] Dyer C.K., “Fuel cells for portable applications”, J. Power Sources, 2002, 106: 31.
[8] Chan S.H., Low C.F., Ding O.L., “Energy and exergy analysis of simple solid-oxide fuel-cell power systems”, J. Power Sources, 2002, 103: 188.
[10] Camacho B.R., Morais C., Valenzuela M.A., Alonso-Vante N., “Enhancing oxygen reduction reaction activity and stability of platinum via oxide-carbon composites”, Catal. Today, 2013, 202: 36.
[11] Divya P., Ramaprabhu S., “Platinum nanoparticles supported on a bi-metal oxide grown carbon nanostructure as an ethanol electro-oxidation electrocatalyst”, J. Mater. Chem. A, 2013, 1: 13605.
[12] Luo J., Wang L., Mott D., Njoki P.N., Lin Y., He T., Xu Zh., Wanjana B.N., Lim I.-Im S., Zhong Ch. J., “Core@Shell Nanoparticles as Electrocatalysts for Fuel Cell Reactions”, Adv. Mater, 2008, 20: 4342.
[13]
Oezaslan M.,
Hasché F., Strasser P., “Pt-Based Core–Shell Catalyst Architectures for Oxygen Fuel Cell Electrodes”,
J. Phys. Chem. Lett., 2013, 4: 3273.
[14] Adzic R., Zhang J., Mo Y., Vukmirovic M., “Platinum-coated non-noble metal-noble metal core-shell electrocatalysts”, US Patent 9005331 B2, 2015.
[16] Zhang Q., Lee I., Joo J.B., Zaera F., “Core-Shell Nanostructured Catalysts”, Acc. Chem. Res., 2013, 46: 1816.
[17] Lu X.,
Luo F., Song H., Liao Sh., Li H., “Pulse electrodeposition to prepare core-shell structured AuPt@Pd/C catalyst for formic acid fuel cell application”, J. Power Sources, 2014, 246: 659.
[18] Zhang M., Yan Z., Xie J., “Core/shell Ni@Pd nanoparticles supported on MWCNTs at improved electrocatalytic performance for alcohol oxidation in alkaline media”, Electrochim. Acta, 2012, 77: 237.
[19] Chaudhuri R.G., Paria S., “Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications”, Chem. Rev., 2012, 112: 2373.
[20] Lin R., Cao Ch., Zhao T., Huang Zh., Li B., Wieckowski A., Ma J., “Synthesis and application of core-shell Co@Pt/C electrocatalysts for proton exchange membrane fuel cells”, J. Power Sources, 2013, 223: 190.
[21] Zhu H., Luo M., Zhang Sh., Wei L., Wang F., Wang Zh., Wei Y., Han K., “Combined method to prepare core-shell structured catalyst for proton exchange membrane fuel cells”, Int. J. Hydrogen Energy, 2013, 38: 3323.
[22] Habibi B., Ghaderi S., “Synthesis, characterization and electrocatalytic activity of Co@Pt nanoparticles supported on carbon-ceramic substrate for fuel cell applications”, Int. J. Hydrogen Energy, 2015, 40: 5115.
[23] Zhao Y., Wang Y., Dong L., Zhang Y., Huang J., Zang J., Lu J., Xu X., “Core-shell structural nanodiamond@TiN supported Pt nanoparticles as a highly efficient and stable electrocatalyst for direct methanol fuel cells”, Electrochim. Acta, 2014, 148: 8.
[24] Fashedemi O.O., Ozoemena K.I., “Comparative electrocatalytic oxidation of ethanol, ethylene glycol and glycerol in alkaline medium at Pd-decorated FeCo@Fe/C core-shell nanocatalysts”, Electrochim. Acta, 2014, 128: 279.
[25] Spendelow J.S., Lu G.Q., Kenis P.J.A., Wieckowski A., “Electrooxidation of adsorbed CO on Pt(111) and Pt(111)/Ru in alkaline media and comparison with results from acidic media”, J. Electroanal. Chem., 2004, 568: 215.
[26] Pandey R.K., Lakshminarayanan V., “Electro-Oxidation of Formic Acid, Methanol, and Ethanol on Electrodeposited Pd-Polyaniline Nanofiber Films in Acidic and Alkaline Medium”, J. Phys. Chem. C, 2009, 113: 21596.
[28] Spendelow J.S., Wieckowski A., “Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media”, Phys. Chem. Chem. Phys., 2007, 9: 2654.
[29] Cohen J.L., Volpe D.J.,
Abruña H.D., “Electrochemical determination of activation energies for methanol oxidation on polycrystalline platinum in acidic and alkaline electrolytes”,
Phys. Chem. Chem. Phys., 2007,
9: 49.
[30] Tsionsky M., Gun G., Giezer V., Lev O., “Sol-Gel-Derived Ceramic-Carbon Composite Electrodes: Introduction and Scope of Applications”, Anal. Chem., 1994, 66: 1747.
[31] Habibi B., Dadashpour E., “Carbon-ceramic supported bimetallic Pt–Ni nanoparticles as an electrocatalyst for electrooxidation of methanol and ethanol in acidic media”, Int. J. Hydrogen Energy, 2013, 38: 5425.
[32] Habibi B., Delnavaz N., “Carbon-ceramic supported bimetallic Pt-Ni nanoparticles as an electrocatalyst for oxidation of formic acid “, Int. J. Hydrogen Energy, 2011, 36: 9581.
[33] Habibi B., Mohammadyari S., “Palladium nanoparticles/nanostructured carbon black composite on carbon–ceramic electrode as an electrocatalyst for formic acid fuel cells”, J Taiwan Inst. Chem. E., 2016, 58: 245.
[34] Schmidt T.J., Ross P.N., Markovic N.M., “Temperature-Dependent Surface Electrochemistry on Pt Single Crystals in Alkaline Electrolyte: Part 1: CO Oxidation”, J. Phys. Chem. B, 2001, 105: 12082.
[35] Tripkovic´ A.V., Popovic´ K.D., Grgur B.N., Blizanac B., Ross P.N., Markovic N.M., “Methanol electrooxidation on supported Pt and PtRu catalysts in acid and alkaline solutions”, Electrochim. Acta, 2002, 47: 3707.
[36] Tripkovic A.V., Popovic K.D., Lovic J.D., “Kinetic study of methanol oxidation on Pt2Ru3/C catalyst in the alkaline media”, J. Serb. Chem. Soc., 2007, 72: 1095.
[37] Tripkovi A. V., Popovi K. Dj., Lovi J. D., Jovanovi V. M., Kowal A., “Methanol oxidation at platinum electrodes in alkaline solution: comparison between supported catalysts and model systems”, J. Electroanal. Chem., 2004, 572: 119.
[38] Vielstich W., “Fuel Cells: Modern Processes for the Electrochemical Production of Energy”, Wiley-Interscience, 1968.
[39] Oliveira R.T.S., Santos M.C., Marcussi B.G., Tanimoto S.T., Bulhões L.O.S., Pereira E.C., “Ethanol oxidation using a metallic bilayer Rh/Pt deposited over Pt as electrocatalyst”, J. Power Sources, 2006, 157: 212.
[40] Jing M., Jiang L., Yi B., Sun G., “Comparative study of methanol adsorption and electro-oxidation on carbon-supported platinum in acidic and alkaline electrolytes”, J. Electroanal. Chem., 2013, 688: 172.
[41] Suffredini H.B., Tricoli V., Vatistas N., Avaca L.A., “Electro-oxidation of methanol and ethanol using a Pt–RuO2/C composite prepared by the sol-gel technique and supported on boron-doped diamond”, J. Power Sources, 2006, 158: 124.
[42] He Q., Chen W., Mukerjee S., Chen Sh., Laufek F., “Carbon-supported PdM (M = Au and Sn) nanocatalysts for the electrooxidation of ethanol in high pH media”, J. Power Sources, 2009, 187: 298.
[43] Bai Y., Wu J., Xi J., Wang J., Zhu W., Chen L., Qiu X., “Electrochemical oxidation of ethanol on Pt–ZrO2/C catalyst”, Electrochem. Commun., 2005, 7: 1087.
[44] Wang H.,
Jusys Z.,
Behm R.J., “Ethanol Electrooxidation on a Carbon-Supported Pt Catalyst: Reaction Kinetics and Product Yields”,
J. Phys. Chem. B, 2004, 108: 19413.
[45] Liu J., Ye J.,
Xu Ch., Jiang S.P., Tong Y., “Kinetics of ethanol electrooxidation at Pd electrodeposited on Ti”, Electrochem. Commun., 2007,
9: 2334.
[46] Jin Ch., Song Y., Chen Zh., “A comparative study of the electrocatalytic oxidation of ethylene glycol on PtAu nanocomposite catalysts in alkaline, neutral and acidic media”, Electrochim. Acta, 2009, 54: 4136.
[47] Abbaspour A.k., Norouz-Sarvestani F., “High electrocatalytic effect of Au-Pd alloy nanoparticles electrodeposited on microwave assisted sol-gel-derived carbon ceramic electrode for hydrogen evolution reaction”, Int. J. Hydrogen Energy, 2013, 38: 1883.
[48] Wang X-M., Xia Y-Y., “The influence of the crystal structure of TiO2 support material on Pd catalysts for formic acid electrooxidation”, Electrochim. Acta, 2010, 55: 851.
[49] Zang J., Dong L., Jia Y., Pan H., Gao Zh., Wang Y., “Core-shell structured SiC@C supported platinum electrocatalysts for direct methanol fuel cells”, Appl. Catal. B Environ., 2014, 144: 166.
[50] Zhu F., Wang M. He Y., Guanshui M., Zhang Zh., Wang X., “A comparative study of elemental additives (Ni, Co and Ag) on electrocatalytic activity improvement of PdSn-based catalysts for ethanol and formic acid electro-oxidation”, Electrochim. Acta, 2014, 148: 291.
[51] Wang X., Ma G., Zhu F., Lin N., Tang B., Zhang Zh., “Preparation and characterization of micro-arc-induced Pd/TM (TM =Ni, Co and Ti) catalysts and comparison of their electrocatalyti activities toward ethanol oxidation”, Electrochim. Acta, 2013, 114: 500.
[52] Gao H., Liao Sh., Liang Zh., Liang H., Luo F., “Anodic oxidation of ethanol on core-shell structured Ru@PtPd/C catalyst in alkaline media”. J. Power Sources, 2011, 196 :6138.
[53] Wei Y.-C., Liu C.-W., Kang W.-D., Lai C.-M., Tsai L.-D., Wang K.-W., “Electro-catalytic activity enhancement of Pd-Ni electrocatalysts for the ethanolelectro-oxidation in alkaline medium: The promotional effect of CeO2 addition”, J. Electroanal. Chem, 2011, 660: 64.
[54] Jin H., Wang D., Zhao Y., Zhou H., Wang Sh., Wang J., “Fabrication of Te@Au core-shell hybrids for efficient ethanol oxidation”, J. Power Sources, 2012, 215: 227.
[55] Ammam M., Easton E. B., “Quaternary PtMnCuX/C (X = Fe, Co, Ni, and Sn) and PtMnMoX/C (X = Fe, Co, Ni, Cu and Sn) alloys catalysts: Synthesis, characterization and activity towards ethanol electrooxidation”, J. Power Sources, 2012, 215: 188.
[56] Dong L., Gari R. R. S., Li Zh., Craig M. M., Hou Sh., “Graphene-supported platinum and platinum–ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation”, Carbon, 2010, 48: 781.
[57] Jiang L., Hsu A., Chu D., Chen R., “Ethanol electro-oxidation on Pt/C and PtSn/C catalysts in alkaline and acid solutions”, Int. J. Hydrogen Energy, 2010, 35: 365.
[58] Bayer D., Berenger S., Joos M., Cremers C., J. Tubke, Electrochemical oxidation of C2 alcohols at platinum electrodes in acidic and alkaline environment, Int. J. Hydrogen Energy, 2010, 35: 12660.
[59] Lamy C., Belgsir E.M, Leger J-M, “Electrocatalytic oxidation of aliphatic alcohols: Application to the direct alcohol fuel cell (DAFCs)”, J. Applied electrochem., 2001, 31: 799.