[1] Yingying Gu , Yicheng Liu , Haihong Yang , Benqiang Li , Yarui An., “ Electrocatalytic glucose oxidation via hybrid nanomaterial catalyst of multi-wall TiO2 nanotubes supported Ni(OH)2 nanoparticles: Optimization of the loading level”, Electrochimica Acta 2015; 160: 263.
[2] Chen C, Lin C, Chen L., “Functionalized Carbon Nanomaterial Supported Palladium Nano-
Catalysts for Electrocatalytic Glucose Oxidation Reaction”, Electrochimica Acta 2015; 152: 408.
[3] Lei L, Keith S, Eileen H., “A direct glucose alkaline fuel cell using MnO2 - carbon nanocomposite supported gold catalyst for anode glucose oxidation”, Journal of Power Sources 2013; 221:1.
[4] Abdulah Mirzaie R. and Eshghi A., “Study of methanol electro-oxidation on Ni and Ni–Pt/carbon paper electrodes for direct methanol fuel cell applications”, Surf. Eng., 2014, 30: 263.
[5] Hebié S, Cornu L, Napporn T, Rousseau J, Kokoh B., “ Insight on the surface structure effect of free gold nanorods on glucose electrooxidation”, J. Phys. Chem.C 2013; 117: 9872.
[6] Basu D, Basu S., “Performance studies of Pd-Pt and Pt-Pd-Au catalyst for electro-oxidation of glucose in direct glucose fuel cell”, Int J Hydrogen Energy 2012; 37: 4678.
[7] Ye W, Zhang X, Chen Y, Du Y, Zhou F. and Wang C., “ Pulsed Electrodeposition of Reduced Graphene Oxide on Glass Carbon Electrode as an Effective Support of Electrodeposited Pt Microspherical Particles: Nucleation Studies and the Application for Methanol Electro-Oxidation”, J. Electrochem. Sci. 2013; 8: 2122.
[8] Habrioux A, Sibert E, Servat K, Vogel W, Kokoh KB, Alonso- Vante N., “ Activity of platinumegold alloys for glucose electrooxidation in biofuel cells”, J Phys Chem B 2007; 111:
10329.
[9] Gao Z.D., “ Nickel Hydroxide Nanoparticle Activated Semi-metallic TiO2 Nanotube Arrays for Non-enzymatic Glucose Sensing”, Chemistry-a European Journal 2013; 19:15530.
[10] Gao H., “One-Step Electrochemical Synthesis of PtNi Nanoparticle-Graphene Nanocomposites for Nonenzymatic Amperometric Glucose Detection”, ACS Applied Materials & Interfaces; 3: 3049.
[11] Zhiani M, Rezaei B, Jalili J., “Methanol electro-oxidation on Pt/C modified by polyaniline nanofibers for DMFC applications”, Int J Hydrogen Energy 2010; 35:9298.
[12] Zhu H., Luo M., Zhang S., Wei L., Wang F., Wang Z., Wei Y. and Han K., “Combined method to prepare core-shell structured catalyst for proton exchange membrane fuel cells’, Int. J. Hydrogen Energy., 2013, 38: 3323.
[13] Cheng C.H., Malek K, Sui P.C. and Djilali N., “Effect of Pt nano-particle size on the microstructure of PEM fuel cell catalyst layers: Insights from molecular dynamics simulations”, Electrochim. Acta., 2010, 55: 1588.
[14] Termpornvithit C., N. Chewasatn N. and Hunsom M., “Stability of Pt-Co/C and Pt-Pd/C based oxygen reduction reaction electrocatalysts prepared at a low temperature by a combined impregnation and seeding process in PEM fuel cells”, J Appl Electrochem., 2012,42: 69.
[15] Ye W., Zhang X., Chen Y., Du Y., Zhou F. and Wang C., “Pulsed Electrodeposition of Reduced Graphene Oxide on Glass Carbon Electrode as an Effective Support of Electrodeposited Pt Microspherical Particles: Nucleation Studies and the Application for Methanol Electro-Oxidation”, J. Electrochem. Sci., 2013, 8: 2122.
[16] Hilder M., Winther-Jensen B., Li D., Forsyth M. and MacFarlane D.R., “Direct electro-deposition of graphene from aqueous suspensions”, Phys. Chem. Chem. Phys., 2011, 13: 9187.
[17] Liu C., Wang K., Luo S., Tang Y. and Chen L., “Direct Electrodeposition of Graphene Enabling the One-Step Synthesis of Graphene–Metal Nanocomposite Films”,Small., 2011, 7: 1203.
[18] Peng Z, Yang H., “PtAu bimetallic heteronanostructures made by post-synthesis modifi cation of Pt-on-Au nanoparticles”, Nano Res 2009; 2:406.
[19] Li B. and Chan S.H., “PtFeNi tri-metallic alloy nanoparticles as electrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells with ultra-low Pt loading”, Int J Hydrogen Energy., 2013; 38: 3338.
[20] Kheirmand M. and Eshghi A., “Electro deposition of platinum nanoparticles on reduced graphene oxide as an efficient catalyst for oxygen reduction reaction”, Iranian Journal of Hydrogen & Fuel Cell 2015; 1:7.
[21] Danaee I, Jafarian M, Forouzandeh F, Gobal F, Mahjani M., “ Electro catalytic oxidation of methanol on Ni and NiCu alloy modified glassy carbon electrode”,Int J Hydrogen Energy 2008; 33: 4367.
[22] Hosseini M and Momeni M., “ Gold particles supported on self-organized nanotubular TiO2
matrix as highly active catalysts for electrochemical oxidation of glucose”, J Solid State Electrochem 2010; 14:1109.
[23] Shamsipur M., Najafi M, Milani Hosseini M., “Highly improved electrooxidation of glucose at a nickel (II) oxide/multi-walled carbon nanotube modified glassy carbon electrode”, Bioelectrochemistry 2010; 77: 120.
[24] Hassaninejad-Darzi S and Yousefi F., “Electrocatalytic oxidation of glucose on the modified carbon paste electrode with sodalite nanozeolite for fuel cell”, Iranian Journal of Hydrogen & Fuel Cell 2015; 1:47.
[25] Yan X., Ge X and Cui S., Pt-decorated nanoporous gold for glucose electrooxidation in neutral and alkaline solutions”, Nanoscale Research Letters., 2011, 6:313.
[26] Basu D, Basu S., “Synthesis and characterization of Pt-Au/C catalyst for glucose electro-oxidation for the application in direct glucose fuel cell”, Int J Hydrogen Energy 2011; 36: 14923.