[1] Garceau N. M., Baik J. H., Lim C. M., Kim S. Y., Oh I.-H.,Karng S. W., "Development of a small-scale hydrogen liquefaction system", Int. J. Hydrogen Energy, 2015, 40: 11872.
[2] Acar C. and Dincer I., "Comparative assessment of hydrogen production methods from renewable and non-renewable sources", Int. J. Hydrogen Energy, 2014, 39: 1.
[3] Saberimoghaddam A. and Bahri Rasht Abadi M. M., "How to Design a Cryogenic Joule-Thomson Cooling System: Case Study of Small Hydrogen Liquefier", Iranian Journal of Hydrogen & Fuel Cell, 2016, 3:113.
[4] Saberimoghaddam A., Abadi B. R.,Mahdi M., "Evaluation of recuperative tube-in-tube heat exchanger operating in cryogenic refrigeration process: simulation-based transient study", Asia-Pacific Journal of Chemical Engineering, 2017, 12: 85.
[5] Damle R. and Atrey M., "The cool-down behaviour of a miniature Joule–Thomson (J–T) cryocooler with distributed J–T effect and finite reservoir capacity", Cryogenics, 2015, 71: 47.
[6] Saberimoghaddam A. and Bahri Rasht Abadi M. M., "Influence of tube wall longitudinal heat conduction on temperature measurement of cryogenic gas with low mass flow rates", Measurement, 2016, 83: 20.
[7] Pacio J. C. and Dorao C. A., "A review on heat exchanger thermal hydraulic models for cryogenic applications", Cryogenics, 2011, 51: 366.
[8] Aminuddin M. and Zubair S. M., "Characterization of various losses in a cryogenic counterflow heat exchanger", Cryogenics, 2014, 64: 77.
[9] Krishna V., Spoorthi S., Hegde P. G.,Seetharamu K., "Effect of longitudinal wall conduction on the performance of a three-fluid cryogenic heat exchanger with three thermal communications", Int. J. Heat Mass Transfer, 2013, 62: 567.
[10] Gupta P. K., Kush P.,Tiwari A., "Second law analysis of counter flow cryogenic heat exchangers in presence of ambient heat-in-leak and longitudinal conduction through wall", Int. J. Heat Mass Transfer, 2007, 50: 4754.
[11] Nellis G., "A heat exchanger model that includes axial conduction, parasitic heat loads, and property variations", Cryogenics, 2003, 43: 523.
[12] Narayanan S. P. and Venkatarathnam G., "Performance of a counterflow heat exchanger with heat loss through the wall at the cold end", Cryogenics, 1999, 39: 43.
[13] Ranganayakulu C., Seetharamu K.,Sreevatsan K., "The effects of longitudinal heat conduction in compact plate-fin and tube-fin heat exchangers using a finite element method", Int. J. Heat Mass Transfer, 1997, 40: 1261.
[14] Chou F.-C., Pai C.-F., Chien S.,Chen J., "Preliminary experimental and numerical study of transient characteristics for a Joule-Thomson cryocooler", Cryogenics, 1995, 35: 311.
[15] Tzabar N. and Kaplansky A., "A numerical cool-down analysis for Dewar-detector assemblies cooled with Joule–Thomson cryocoolers", Int. J. Ref., 2014, 44: 56.
[16] Hong Y.-J., Park S.-J., Kim H.-B.,Choi Y.-D., "The cool-down characteristics of a miniature Joule–Thomson refrigerator", Cryogenics, 2006, 46: 391.
[17] Maytal B., "Cool-down periods similarity for a fast Joule-Thomson cryocooler", Cryogenics, 1992, 32: 653.
[18] Chien S. B., Chen L. T.,Chou F. C., "A study on the transient characteristics of a self-regulating Joule-Thomson cryocooler", Cryogenics, 1996, 36: 979.
[19] Xin R. and Ebadian M., "The effects of Prandtl numbers on local and average convective heat transfer characteristics in helical pipes", J. Heat Transfer, 1997, 119: 467.