Interaction of atomic hydrogen with monometallic Au(100), Cu(100), Pt(100) surfaces and surface of bimetallic Au@Cu(100), Au@Pt(100) overlayer systems: The role of magnetism

Document Type : Research Paper


Department of Chemical Technologies, Iranian Research Organization for Science and Technology, Tehran, Iran


The spin-polarized calculations in generalized gradient approximation density–functional theory (GGA–DFT) have been used to show how the existence of second metals can modify the atomic hydrogen adsorption on Au (100), Cu (100), and Pt (100) surfaces. The computed adsorption energies for the atomic hydrogen adsorbed at the surface coverage of 0.125 ML (monolayer) for the monometallic Au (100), Cu (100), Pt (100) and bimetallic Au@Cu (100) and Au@Pt (100) surfaces are 3.98, 5.06, 4.13, 5.30, and 6.36 eV, respectively. Due to the adsorption of hydrogen atoms, the Au atoms of Au (100), Cu atoms of Cu (100), and Pt atoms of Au@Pt (100) surfaces tend to lose the 6s1, 4s1, and 6s1 electrons and reach the 5d10, 3d10, and 5d9 electronic configurations, respectively. In Pt (100), Au@Cu (100), and Au@Pt (100) systems, the spin-up and spin-down bands are asymmetric and shift significantly in opposite directions. Therefore, they are spin polarized; spin paramagnetism is also observed.


Main Subjects

[1] Ferrin P. Kandoia S. Udaykumar Nilekara A. and Mavrikakisa M., “Hydrogen absorption and diffusion on and in transition metal surfaces: A DFT study”, Surf Sci, 2012, 606:7.
[2] Edwards P. P.  Kuznetsov V. L. David W. I. F. and Brandon N. P., “Hydrogen and fuel cells: Towards a sustainable energy future”, Energy Policy, 2008, 36:4356.
[3] Neef H. J., “International overview of hydrogen and fuel cell research”, Energy, 2009, 34: 327.
[4] Gupta R. B., 1st ed., Hydrogen Fuel: Production, Transport and Storage, CRC Press, 2009.
[5] Haruta M., “When Gold Is Not Noble: Catalysis by Nanoparticles”, Chem Rec, 2003, 3: 75.
[6] Ma Z. Dai S., “Design of Novel Structured Gold Nanocatalysts”, ACS Catal, 2011, 1: 805.
[7] Ma Z. Dai S., “Development of novel supported gold catalysts: A materials perspective”, Nano Res, 2011, 4:3.
[8] Gawande M. B.  Rathi A. K. Tucek J. Safarova K. Bundaleski N.  Teodoro O. M. N. D. Kvitek L. Varma R. S. and Zboril R., “Magnetic gold nanocatalyst (nanocat-Fe–Au): catalytic applications for the oxidative esterification and hydrogen transfer reactions”, Green Chem, 2014, 16:4137.
[9] Lucci F. R. Darby M. T. Mattera M. F. G. Ivimey C. J. Therrien A. J. Michaelides A. Stamatakis M. Charles E. and Sykes H., “Controlling Hydrogen Activation, Spillover, and Desorption with Pd− Au Single-Atom Alloys”, J Phys Chem Lett, 2016, 7:480.
[10] Kim K. J. and Ahn H. G., “Bimetallic Pt-Au Nanocatalysts on ZnO/Al2O3/Monolith for Air Pollution Control”, J Nanosci Nanotechnol, 2015, 15:6108.
[11] Babu S. G. Gopiraman M. Deng D., Wei K. Karvembu R. and Kim I. S., “Robust Au–Ag/graphene bimetallic nanocatalyst for multifunctional activity with high synergism”, Chem Eng J, 2016, 300:146.
[12] Calzada L. A. Collins S. E. Han C. W, Ortalan V. and Zanella R., “Synergetic Effect of Bimetallic Au-Ru/TiO2 Catalysts for Complete Oxidation of Methanol”, Appl Catal B, 2017, 207: 79.
[13] Hashmi A. S. K. and Hutchings G. J., “Gold catalysis”, Angew Chem Int Ed, 2006, 45:7896.
[14] Ouyang R. and Li W. X., “First-principles study of the adsorption of Au atoms and Au2 and Au4 clusters on FeO/Pt (111)”, Phys Rev B, 2011, 84:165403.
[15] Jalili S. Zeini Isfahani A. and Habibpour R., “Atomic oxygen adsorption on Au (100) and bimetallic Au/M (M = Pt and Cu) surfaces”, Comput Theor Chem, 2012, 989:18.
[16] Jalili S. Zeini Isfahani A. and Habibpour R., “DFT investigations on the interaction of oxygen reduction reaction intermediates with Au (100) and bimetallic Au/M (100) (M = Pt, Cu, and Fe) surfaces”, International Journal of Industrial Chemistry, 2013, 4:33.
[17] Chen W. Schneider W. F. and Wolverton C., “Trends in atomic adsorption on Pt3M(111) transition metal bimetallic surface overlayers”, J Phys Chem C, 2014, 118:8342.
[18] Juarez F. Soldano G. Santos E. Guesmi H. Tielens F. and Mineva T., “Interaction of Hydrogen with Au Modified by Pd and Rh in View of Electrochemical Applications”, Computation, 2016, 4:26.
[19] Giannozzi P. Baroni S. Bonini N. Calandra M. Car R. Cavazzoni C. Ceresoli D. Chiarotti G. L. Cococcioni M. Dabo I. Dal Corso A. Fabris S. Fratesi G. de Gironcoli S. Gebauer R. Gerstmann U. Gougoussis C. Kokalj A. Lazzeri M. Martin-Samos L. Marzari  N. Mauri F. Mazzarello R. Paolini S. Pasquarello A. Paulatto L. Sbraccia C. Scandolo S. Sclauzero G. Seitsonen A. P. Smogunov A. Umari P. Wentzcovitch R. M., “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials“, J Phys :Condens Matter., 2009 21:39550
[20] Blöchl P. E., “Projector augmented-wave method”, Phys Rev B., 1994 50:17953.
[21] Perdew J. P. and Wang Y., “Accurate and simple analytic representation of the electron-gas correlation energy”, Phys Rev B., 1992 45:13244.
[22] Monkhorst H. J. and Pack J. D., “Special points for Brillouin-zone integrations”, Phys Rev B., 1976 13:5188.
[23] Hammer B. and Nørskov J. K., “Electronic factors determining the reactivity of metal surfaces”, Surf Sci., 1995, 343:211.
[24] Hammer B. Morikawa Y. and Norskov J. K., “CO chemisorption at metal surfaces and overlayers”, Phys Rev Lett., 1996, 76:214.
[25] Ferrin P. Kandoia S. Udaykumar Nilekara A. and Mavrikakisa M., “Hydrogen adsorption, absorption and diffusion on and in transition metal surfaces: A DFT study”, Surf Sci., 2012, 606:679.
[26] Pang X. Y. Xue L. Q. and Wang G. C., “Adsorption of Atoms on Cu Surfaces: A Density Functional Theory Study”, Langmuir, 2007, 23:4910.
[27] Ndollo M. Moussounda P. S. Dintzer T. and Garin F., “A Density Functional Theory Study of Methoxy and Atomic Hydrogen Chemisorption on Au(100) Surface. J Mod Phys, 2013, 4:409.
[28] G´omez E. D. V. Amaya-Roncancio S. Avalle L. B. Linares D. H. and Gimenez M. C., “DFT Study of Adsorption and Diffusion of Atomic Hydrogen on Metal Surfaces”, appl surf sci, 2017, 420:1.