[1] Ameri M. and Mohammadi R., “Simulation of an atmospheric SOFC and gas turbine hybrid system using Aspen Plus software”, Int. J. Energy Resources, 2011, 37:412.
[2] Dang Z., Zhao H. and Xi G., “Conceptual Design and Performance Analysis of SOFC/Micro Gas Turbine Hybrid Distributed Energy System”, J. Fuel Cell Science and Technology, 2015, 12:031003/1.
[3] Massardo A. F. and Magistri L., “Internal Reforming Solid Oxide Fuel Cell Gas Turbine Combined Cycles (IRSOFC-GT)—Part II: Exergy and Thermoeconomic Analyses”, J. Engineering for Gas Turbines and Power, 2003, 125:67.
[4] Sreeramulu M. and Gupta A. V. S. S. K. S., “Exergy analysis of gas turbine – solid oxide fuel cell-based combined cycle power plant”, Int. J. Energy Technology and Policy, 2011, 7:469.
[5] Fatahian E., Tonekaboni N. and Fatahian H., “Exergy Analysis of Combined Cycle of Gas Turbine and Solid Oxide Fuel Cell in Different Comparison Ratios”, Int. J. Scientific World 2016, 4:43.
[6] Khani L., Saberi Mehr A., Yari M. and Mahmoudi S. M. S., “Multi-objective optimization of an indirectly integrated solid oxide fuel cell-gas turbine cogeneration system”, Int. J. Hydrogen Energy, 2016, 41:21470.
[7] Arsalis A., “Thermoeconomic Modeling and Parametric Study of Hybrid Solid Oxide Fuel Cell-Gas Turbine-Steam Turbine Power Plants Ranging From 1.5 MWe to 10 MWe”, J. power sources, 2008, 181:313.
[8] Eveloy V., Karunkeyoon W., Rodgers P. and Al Alili A., “Energy, exergy and economic analysis of an integrated solid oxide fuel cell-gas turbine-organic Rankine power generation system”, Int. J. Hydrogen Energy, 2016, 41:13843.
[9] Shirazi A., Aminyavari M., Najafi B., Rinaldi F. and Razaghi M., “Thermal-economic-environmental analysis and multi-objective optimization of an internal-reforming solid oxide fuel cell-gas turbine hybrid system”, Int. J. Hydrogen Energy, 2012, 37:19111.
[10] Haghighat Mamaghani A., Najafi B., Shirazi A. and Rinaldi F., “Exergetic, economic, and environmental evaluations and multi-objective optimization of a combined molten carbonate fuel cell-gas turbine system”, Applied Thermal Engineering 2015, 77:1.
[11] Zhang X., Liu H., Ni M. and Chen J., “Performance evaluation and parametric optimum design of a syngas molten carbonate fuel cell and gas turbine hybrid system”, Renewable Energy, 2015, 80:407.
[12] Haghighat Mamaghani A., Najafi B., Shirazi A. and Rinaldi F., “4E analysis and multi-objective optimization of an integrated MCFC (molten carbonate fuel cell) and ORC (organic Rankine cycle) system”, Energy, 2015, 82:650.
[13] El-Emam R. S. and Dincer I., “Energy and exergy analyses of a combined molten carbonate fuel cell- Gas turbine system”, Int. J. Hydrogen Energy, 2011, 36:8927.
[14] Chan S. H., Ho H. K. and Tian Y., “Modelling of simple hybrid solid oxide fuel cell and gas turbine power plant”, J. Power Sources, 2002, 109:111.
[15] Volkan Akkaya A., “Electrochemical Model for Performance Analysis of a Tubular SOFC”, Int. J. Energy Research, 2007, 31:79.
[16] Yuh C. Y. and Selman J. R., “The polarization of molten carbonate fuel cell electrodes: I. analysis of steady-state polarization data”, J. Electrochemical Society, 1991, 138:3642.
[17] Yuh C. Y. and Selman J. R., “The polarization of molten carbonate fuel cell electrodes: II. characterization by AC impedance and response to current interruption”, J. Electrochemical Society, 1991, 138:3649.
[18] Sadeghi S. and Ameri M., “Study the Combination of Photovoltaic Panels with Different Auxiliary Systems in Grid-Connected Condition”, J. Solar Energy Engineering, 2014, 136:636.