Determination of thermodynamic parameters of hydrogen permeation of palladium membrane for considering the effect of stainless steel support

Document Type : Research Paper

Authors

1 Tarbiat Modares University

2 Chemistry and Chemical Engineering Research Center of Iran

Abstract

A palladium composite membrane was prepared by electroless plating on oxidized porous stainless steel support (ox-PSS). Hydrogen permeation flux through this composite membrane was measured in the temperature range of 574-674K and the pressure difference of two sides of membrane up to 90kPa. A simplified resistance model was employed to analyze the permeation behavior of hydrogen through Pd/ox-PSS membrane for calculating the contribution of each layer in resistance against the hydrogen transport. The amount of enthalpy of hydrogen dissolution of palladium membrane is -9.4kJ/mol. Considering a complete detailed model, this value was used for discussing the effect of interaction of metal- support on hydrogen exiting from the palladium layer at the downstream side. Several composite membranes which differ in support material has been compared with each other. It was confirmed that the metal-support interaction, plays an effective role in exiting activation energy. In Pd/ox-PSS composite membrane, the metal-support interaction decreases hydrogen exiting rate from Pd membrane’s downstream side.

Keywords

Main Subjects


(1)        Ryi S.K., Park J.S., Kim S.H., Cho S.H., Park J.S. and Kim D.W., “Development of a new porous metal support of metallic dense membrane for hydrogen separation” , J. Memb. Sci., 2006, 279: 439.
            (2)        Mardilovich I. P., Engwall E. and Ma Y. H., “Dependence of hydrogen flux on the pore size and plating surface topology of asymmetric Pd-porous stainless steel membranes”, Desalination, 2002, 144: 85.
            (3)        Hu X., Yu J., Song J., Wang X. and Huang Y., “Toward low-cost Pd/ceramic composite membranes for hydrogen separation: A case study on reuse of the recycled porous Al2O3 substrates in membrane fabrication”, Int. J. Hydrogen Energy, 2011, 36: 15794.
            (4)        Wu J. P., Brown I. W. M., Bowden M. E. and Kemmitt T., “Palladium coated porous anodic alumina membranes for gas reforming processes”, Solid State Sci., 2010, 12: 1912.
            (5)        Ryi S.K., Xu N., Li A., Lim C. J. and Grace J. R., “Electroless Pd membrane deposition on alumina modified porous Hastelloy substrate with EDTA-free bath”, Int. J. Hydrogen Energy, 2010, 35: 2328.
            (6)        Samingprai S., Tantayanon S. and Ma Y. H., “Chromium oxide intermetallic diffusion barrier for palladium membrane supported on porous stainless steel”, J. Memb. Sci., 2010, 347: 8.
            (7)        Yepes D., Cornaglia L. M., Irusta S. and Lombardo E. A., “Different oxides used as diffusion barriers in composite hydrogen permeable membranes”, J. Memb. Sci., 2006, 274: 92.
            (8)        Gao H., S. Lin J. Y., Li Y. and Zhang B., “Electroless plating synthesis, characterization and permeation properties of Pd–Cu membranes supported on ZrO2 modified porous stainless steel”, J. Memb. Sci., 2005, 265: 142.
            (9)        Huang Y. and Dittmeyer R., “Preparation and characterization of composite palladium membranes on sinter-metal supports with a ceramic barrier against intermetallic diffusion”, J. Memb. Sci., 2006, 282: 296.
            (10)      Calles J. A., Sanz R. and Alique D., “Influence of the type of siliceous material used as intermediate layer in the preparation of hydrogen selective palladium composite membranes over a porous stainless steel support”, Int. J. Hydrogen Energy, 2012, 37: 6030.
            (11)      Qiao A., Zhang K., Tian Y., Xie L., Luo H., Lin Y. S. and Li Y., “Hydrogen separation through palladium–copper membranes on porous stainless steel with sol–gel derived ceria as diffusion barrier”, Fuel, 2010, 89: 1274.
            (12)      Morreale B. D., Ciocco M. V., Howard B. H., Killmeyer R. P., Cugini A. V. and Enick R. M., “Effect of hydrogen-sulfide on the hydrogen permeance of palladium–copper alloys at elevated temperatures”, J. Memb. Sci., 2004, 241: 219.
            (13)      Xie D., Yu J., Wang F., Zhang N., Wang W., Yu H., Peng F. and Park, A. H. A., “Hydrogen permeability of Pd–Ag membrane modules with porous stainless steel substrates”, Int. J. Hydrogen Energy, 2011, 36: 1014.
            (14)      Coulter K. E., Way J. D., Gade S. K., Chaudhari S., Alptekin G. O., DeVoss S. J., Paglieri S. N. and Pledger, B., “Sulfur tolerant PdAu and PdAuPt alloy hydrogen separation membranes”, J. Memb. Sci., 2012, 405–406: 11.
            (15)      Ryi S. K., Park  J. S., Kim S.H., Kim D. W. and Cho K. I., “Formation of a defect-free Pd–Cu–Ni ternary alloy membrane on a polished porous nickel support (PNS)”, J. Memb. Sci., 2008, 318: 346.
            (16)      Coulter K. E., Way J. D., Gade S. K., Chaudhari S., Sholl D. S. and Semidey-Flecha, L., “Predicting, Fabricating, and Permeability Testing of Free-Standing Ternary Palladium-Copper-Gold Membranes for Hydrogen Separation”, J. Phys. Chem. C, 2010, 114: 17173.
            (17)      Tarditi A. M. and Cornaglia L. M., “Novel PdAgCu ternary alloy as promising materials for hydrogen separation membranes: Synthesis and characterization”, Surf. Sci., 2011, 605: 62.
            (18)      Peters T. A., Kaleta T., Stange M. and Bredesen R., “Development of thin binary and ternary Pd-based alloy membranes for use in hydrogen production”, J. Memb. Sci., 2011, 383: 124.
            (19)      McCool B. A. and Lin Y. S., “Nanostructured thin palladium-silver membranes: Effects of grain size on gas permeation properties”, J. Mater. Sci., 2001, 36: 3221.
            (20)      Souleimanova R. S., Mukasyan A. S. and Varma A., “Effects of osmosis on microstructure of Pd-composite membranes synthesized by electroless plating technique”, J. Memb. Sci., 2000, 166: 249.
            (21)      Kim D., Donohue D., Kuncharam B., Duval C. and Wilhite B. A., “Toward an Integrated Ceramic Micro-Membrane Network: Effect of Ethanol Reformate on Palladium Membranes”, Ind. Eng. Chem. Res., 2010, 49: 10254.
            (22)      Boeltken T., Belimov M., Pfeifer P., Peters T. A., Bredesen R. and Dittmeyer R., “Fabrication and testing of a planar microstructured concept module with integrated palladium membranes”, Chem. Eng. Process. Process. Intensif., 2013, 67: 136.
            (23)      Huang T. C., Wei M. C. and Chen H. I., “A Study of the Hydrogen Transport Properties of Palladium/Alumina Composite Membranes”, Chem. Eng. Commun., 2002, 189: 1340.
            (24)      Zhang K., Wei X., Rui Z., Li Y., Lin Y. S., “Effect of metal-support interface on hydrogen permeation through palladium membranes”, AIChE J., 2009, 55: 630.
            (25)      Henis J. M. S. and Tripodi M. K., “Composite hollow fiber membranes for gas separation: the resistance model approach”, J. Memb. Sci., 1981, 8: 233.
            (26)      Yun S. and Ted Oyama S., “Correlations in palladium membranes for hydrogen separation: A review”, J. Memb. Sci., 2011, 375: 28.
            (27)      Ward T. L. and Dao T., “Model of hydrogen permeation behavior in palladium membranes”, J. Memb. Sci., 1999, 153: 211.
            (28)      Holleck G. L., “Diffusion and solubility of hydrogen in palladium and palladium--silver alloys”, J. Phys. Chem., 1970, 74: 503.
            (29)      Hurlbert R. C. and Konecny J. O., “Diffusion of Hydrogen through Palladium”, J Chem. Phys., 1961, 34: 655.
            (30)      Hara S., Caravella A., Ishitsuka M., Suda H., Mukaida M., Haraya K., Shimano E. and Tsuji T., “Hydrogen diffusion coefficient and mobility in palladium as a function of equilibrium pressure evaluated by permeation measurement”, J. Memb. Sci., 2012, 421–422: 355.
            (31)      Bhargav, A., Jackson, G. S., Ciora Jr, R. J. and Liu, P. T. K., “Model development and validation of hydrogen transport through supported palladium membranes”, J. Memb. Sci., 2010, 356: 123.
            (32)      Okazaki J., Ikeda T., Pacheco Tanaka D. A., Llosa Tanco M. A., Wakui Y., Sato K., Mizukami F. and Suzuki T. M., “Importance of the support material in thin palladium composite membranes for steady hydrogen permeation at elevated temperatures”, Phys. Chem. Chem. Phys., 2009, 11: 8632.
            (33)      Akis B. C., “Preparation of Pd-Ag/PSS Composite Membranes for Hydrogen Separation”. Ph.D. Thesis, Worcester Polytechnique institue, 2003.
            (34)      Bryden K. J. and Ying J. Y., “Nanostructured palladium–iron membranes for hydrogen separation and membrane hydrogenation reactions”, J. Memb. Sci., 2002, 203: 29.
            (35)      Wang D., Flanagan T. B. and Shanahan K. L., “Hydrogen permeation measurements of partially internally oxidized Pd–Al alloys in the presence and absence of CO”, J. Memb. Sci., 2005, 253: 165.