[1] Marban G., Valdes-Solis T., “Towards the hydrogen economy?”, Int. J. Hyd. Eng., 2007, 32(12): 1625.
[2] Palo D. R., “Methanol steam reforming for hydrogen production”, Chem. Rev., 2007, 107: 3992.
[3] Kawabata T., Matsuoka H., Shishido T., Li D., Tian Y., Sano T., Takehira K., “Steam reforming of dimethyl ether over ZSM-5 coupled with Cu/ZnO/Al2O3 catalyst prepared by homogeneous precipitation”, Appl. Catal. A: Gen., 2006, 308: 82.
[4]
Topp-Jorgensen J., “Reacting crystalline aluminosilicate with nitrogen containing base, then desorption aftertreatment” U.S. Patent No. 4536485, 1985.
[5] Dybkjir I., Hansen J.B., “Large scale production of alternative synthetic fuels from natural gas”, Stud. Surf. Sci. Catal., 1997, 107: 99.
[6] Solymosi F, Barthos R, Kecskemeti A., “The decomposition and steam reforming of dimethyl ether supported Mo2C catalysts”, Appl. Catal. A, 2008, 350(1): 30.
[7] Badmaeva S.D., Snytnikov P.V., “Hydrogen production from dimethyl ether and bioethanol for fuel cell applications”, Int. J. Hydrogen Energy, 2008, 33(12): 3026.
[8] Mathew T., Yamada Y., Ueda A., Shioyama H., Kobayashi T., Gopinath C.S., “Effect of support on the activity of Ga2O3 species for steam reforming of dimethyl ether”, Appl. Catal. A., 2006, 300(1): 58.
[9] Matsumoto T., Nishiguchi T., Kanai H., Utani K., Matsumura Y., Imamura S., “Steam reforming of dimethyl ether over H-mordenite-Cu/CeO2 catalysts”, Appl. Catal. A., 2004, 276(1): 267.
[10] Nishiguchi T., Oka K., Matsumoto T., Kanai H., Utani K., Imamura S., “Durability of WO3/ZrO2-CuO/CeO2 catalysts for steam reforming of dimethyl ether”, Appl. Catal. A., 2006, 301(1): 66.
[11] Wang X., Pan X., Lin R., Kou S., Zou W., Ma J.X., “Steam reforming of dimethyl ether over CueNi/g Al2O3 bi-functional catalyst prepared by deposition precipitation method”, Int. J. Hydrogen Energy, 2010, 35(9): 4060.
[12] Takeishi K., Suzuki H., “Steam reforming of dimethyl ether”, Appl. Catal. A., 2004, 260(1): 111.
[13] Galvita V.V., Semin G.L., Belyaev V.D., Yurieva T.M., Sobyanin V.A., “Production of hydrogen from dimethyl ether”, Appl. Catal. A., 2001, 216(1): 85.
[14] Semelsberger T.A., Ott K.C., Borup R.L., Greene H.L., “Generating hydrogen-rich fuel-cell feeds from dimethyl ether (DME) using Cu/Zn supported on various solid-acid substrates”, Appl. Catal. A., 2006, 309(2): 210.
[15] Fukunaga T., Ryumon N., Shimazu S., “The influence of metals and acidic oxide species on the reforming of dimethyl ether (DME)”, Appl. Catal. A., 2008, 348(2): 193.
[16] Yamada Y., Mathew T., Ueda A., Shioyama H., Kobayashi T., “A novel DME steam-reforming catalyst designed with fact database on-demand”, Appl. Surf. Sci., 2006, 252(7): 2593.
[17] McHugh K., “Hydrogen Production Methods”, MPR Associates Inc., 2005, p. 41.
[18] Avcm A. K., Trimm D.L., İlsen Önsan Z., “Heterogeneous reactor modeling for simulation of catalytic oxidation and steam reforming of methane”, Chem. Eng. Sci., 2001(56): 641.
[19] Lee D.K., Baek I.H., Yoon W.L., “Modeling and simulation for the methane steam reforming enhanced by in situ CO2 removal utilizing the CaO carbonation for H2 production”, Chem. Eng. Sci., 2004, 59: 93.
[20] Halabi M.H., de Croon J.M., Van der Schaaf J., Cobden P.D., Schouten J.C., Modeling and analysis of auto thermal reforming of methane to hydrogen in a fixed bed reformer”, Chem. Eng. J., 2008, 137: 568.
[21] Creaser D., Nilsson M., Pettersson L.J., Dawody J., “Kinetic modeling of auto thermal reforming of dimethyl ether”, Ind. Eng. Chem. Res., 2010, 49: 9712.
[22] Feng D., Wang Y., Wang D., Wang J., “Steam reforming of dimethyl ether over CuO–ZnO–Al2O3–ZrO2 + ZSM-5: A kinetic study”, Chem. Eng. J., 2009, 146: 477.
[23] Namuangruk S., Faungnawakij K., “Experimental and theoretical investigations on the hydrolysis of dimethyl ether to methanol over H-ZSM-5”, Nanotechnology joint symposium with nano Korea, 2010.
[24] Patel S., Pant K.K., “Experimental study and mechanistic kinetic modeling for selective production of hydrogen via catalytic steam reforming of methanol”, Chem. Eng. Sci., 2007, 62: 2425.