[1] X. Zhou, J. Qiao, L. Yang, J. Zhang, A review of graphene‐based nanostructural materials for both catalyst supports and metal‐free catalysts in PEM fuel cell oxygen reduction reactions, Advanced Energy Materials, 2014, 1301523.
[2] M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells, Nature, 2012, 486: 43.
[3] I.E.L. Stephens, J. Rossmeisl, I. Chorkendorff, Toward sustainable fuel cells, Science (New York, N.Y.) 2016, 354: 1378.
[4] G. Wang, Y. Yu, H. Liu, C. Gong, S. Wen, X. Wang, Z. Tu, Progress on design and development of polymer electrolyte membrane fuel cell systems for vehicle applications: A review, Fuel Processing Technology, 2018, 179: 203.
[5] A. Abaspour, N.T. Parsa, M. Sadeghi, A new feedback Linearization-NSGA-II based control design for PEM fuel cell, International Journal of Computer Applications, 2014, 97.
[6] W. Schmittinger, A. Vahidi, A review of the main parameters influencing long-term performance and durability of PEM fuel cells, Journal of power sources, 2008, 180: 1.
[7] H.S. Choo, D.K. Chun, J.H. Lee, H.S. Shin, S.K. Lee, Y.S. Park, B.K. Ahn, Performance Recovery of Fuel Cell Stack for FCEV, SAE Technical Paper, 2015.
[8] T. Patterson, Effect of potential cycling on loss of electrochemical surface area of platinum catalyst in polymer electrolyte membrane fuel cell, AIChE Spring National Meeting Proceedings, 2002.
[9] S. Motupally, T. Jarvi, The Electrochem. Soc, 208th Meeting, Abstract, Los Angeles, CA, 2005.
[10] P. Ascarelli, V. Contini, R. Giorgi, Formation process of nanocrystalline materials from x-ray diffraction profileanalysis: Application to platinum catalysts, Journal of applied physics, 2002, 91: 4556.
[11] G. Hinds, NPL Report DEPC-MPE 002, National Physical Laboratory, Teddington, UK 2004.
[12] R.L. Borup, J.R. Davey, F.H. Garzon, D.L. Wood, M.A. Inbody, PEM fuel cell electrocatalyst durability measurements, Journal of Power Sources, 2006, 163: 76.
[13] W. Li, M. Ruthkosky, M. Balogh, R. Makharia, S. Oh, Proceedings of the Fuel Cells Durability, first ed., Washington, DC, 2006, 101.
[14] G. Escobedo, K. Schwiebert, K. Raiford, G. Nagarajan, F. Principe, Proceedings of the Fuel Cells Durability, first ed., Washington, DC, 2006, 83.
[15] X. Cheng, Z. Shi, N. Glass, L. Zhang, J. Zhang, D. Song, Z.-S. Liu, H. Wang, J. Shen, A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation, Journal of Power Sources 2007, 165: 739.
[16] S.-Y. Ahn, S.-J. Shin, H. Ha, S.-A. Hong, Y.-C. Lee, T. Lim, I.-H. Oh, Performance and lifetime analysis of the kW-class PEMFC stack, Journal of Power Sources, 2002, 106: 295.
[17] J. St-Pierre, D. Wilkinsor, S. Knights, M. Bos, Relationships between water management, contamination and lifetime degradation in PEFC, Journal of New Materials for Electrochemical Systems, 2000, 3: 99.
[18] J. Zhang, H. Wang, D.P. Wilkinson, D. Song, J. Shen, Z.-S. Liu, Model for the contamination of fuel cell anode catalyst in the presence of fuel stream impurities, Journal of Power Sources, 2005, 147: 58.
[19] A. Collier, H. Wang, X.Z. Yuan, J. Zhang, D.P. Wilkinson, Degradation of polymer electrolyte membranes, International Journal of Hydrogen Energy, 2006, 31: 1838.
[20] J. Baschuk, X. Li, Carbon monoxide poisoningof proton exchange membrane fuel cells, International Journal of Energy Research, 2001, 25: 695.
[21] P. Stonehart, P.N. Ross, The commonality of surface processes in electrocatalysis and gas-phase heterogeneous catalysis, Catalysis Reviews ,1975, 12: 1.
[22] M. Watanabe, S. Motoo, Chemisorbed CO on a polycrystalline platinum electrode The effect of conditioning of the surface and of partial pressure of CO, Journal of electroanalytical chemistry and interfacial electrochemistry, 1986, 206:197.
[23] H. Igarashi, T. Fujino, M. Watanabe, Hydrogen electro-oxidation on platinum catalysts in the presence of trace carbon monoxide, Journal of Electroanalytical Chemistry, 1995, 391: 119.
[24] K. Jambunathan, B.C. Shah, J.L. Hudson, A.C. Hillier, Scanning electrochemical microscopy of hydrogen electro-oxidation. Rate constant measurements and carbon monoxide poisoning on platinum, Journal of Electroanalytical Chemistry, 2001, 500: 279.
[25] A. Rodrigues, J.C. Amphlett, R.F. Mann, B.A. Peppley, P.R. Roberge, Carbon monoxide poisoning of proton-exchange membrane fuel cells, IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No. 97CH6203), IEEE, 1997, 768.
[26] N. Rajalakshmi, T. Jayanth, K. Dhathathreyan, Effect of carbon dioxide and ammonia on polymer electrolyte membrane fuel cell stack performance, Fuel cells, 2003, 3:177.
[27] F. De Bruijn, D. Papageorgopoulos, E. Sitters, G. Janssen, The influence of carbon dioxide on PEM fuel cell anodes, Journal of Power Sources, 2002, 110: 117.
[28] M. Arévalo, C. Gomis-Bas, F. Hahn, B. Beden, A. Arévalo, A. Arvia, A contribution to the mechanism of “reduced” CO2 adsorbates electro-oxidation from combined spectroelectrochemical and voltammetric data,
Electrochimica acta 1994, 39:793.
[29] B. Nikolic, H. Huang, D. Gervasio, A. Lin, C. Fierro, R. Adzic, E. Yeager, Electroreduction of carbon dioxide on platinum single crystal electrodes: electrochemical and in situ FTIR studies, Journal of electroanalytical chemistry and interfacial electrochemistry, 1990, 295:415.
[30] T. Iwasita, F. Nart, B. Lopez, W. Vielstich, On the study of adsorbed species at platinum from methanol, formic acid and reduced carbon dioxide via in situ FT-ir spectroscopy, Electrochimica acta, 1992, 37: 2361.
[31] J. Giner, Electrochemical reduction of CO2 on platinum electrodes in acid solutions, Electrochimica Acta, 1963, 8: 857.
[32] J. Sobkowski, A. Czerwiński, Kinetics of carbon dioxide adsorption on a platinum electrode, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1974, 55: 391.
[33] J. Sobkowski, A. Czerwinski, Voltammetric study of carbon monoxide and carbon dioxide adsorption on smooth and platinized platinum electrodes, The Journal of Physical Chemistry, 1985, 89: 365.
[34] S. Gilman, The mechanism of electrochemical oxidation of carbon monoxide and methanol on platinum. II. The “Reactant-Pair” mechanism for electrochemical oxidation of carbon monoxide and Methanol1, The Journal of Physical Chemistry, 1964, 68: 70.
[35] M. Murthy, M. Esayian, W.-k. Lee, J. Van Zee, The effect of temperature and pressure on the performance of a PEMFC exposed to transient CO concentrations, Journal of The Electrochemical Society, 2003, 150: A29.
[36] R. Mohtadi, W.-K. Lee, J. Van Zee, The effect of temperature on the adsorption rate of hydrogen sulfide on Pt anodes in a PEMFC, Applied Catalysis B: Environmental, 56:2005, 37.
[37] R. Mohtadi, W.-K. Lee, S. Cowan, J. Van Zee, M. Murthy, Effects of hydrogen sulfide on the performance of a PEMFC, Electrochemical and solid-state letters, 2003, 6:A272.
[38] S. Knights, N. Jia, C. Chuy, J. Zhang, Fuel Cell Seminar 2005: Fuel Cell Progress, Challenges and Markets, Palm Springs, California, 2005.
[39] N. Ramasubramanian, Anodic behavior of platinum electrodes in sulfide solutions and the formation of platinum sulfide, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1975, 64: 21.
[40] A. Contractor, H. Lal, Two forms of chemisorbed sulfur on platinum and related studies, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1979, 96: 175.
[41] R. Halseid, P.J. Vie, R. Tunold, Effect of ammonia on the performance of polymer electrolyte membrane fuel cells, Journal of Power Sources, 2006, 154: 343.
[42] H.J. Soto, W.-k. Lee, J. Van Zee, M. Murthy, Effect of transient ammonia concentrations on PEMFC performance, Electrochemical and solid-state letters, 2003, 6: A133.
[43] F.A. Uribe, S. Gottesfeld, T.A. Zawodzinski, Effect of ammonia as potential fuel impurity on proton exchange membrane fuel cell performance, Journal of the Electrochemical Society, 2002, 149: A293.
[44] R. Halseid, P.J. Vie, R. Tunold, Influence of ammonium on conductivity and water content of Nafion 117 membranes, Journal of the electrochemical society, 2004, 151: A381.
[45] R.L. Borup, J.R. Davey, F.H. Garzon, D.L. Wood, M.A. Inbody, Proceedings of the Fuel Cells Durability, first ed., Washington, DC, 2006, 21.
[46] A. Taniguchi, T. Akita, K. Yasuda, Y. Miyazaki, Analysis of electrocatalyst degradation in PEMFC caused by cell reversal during fuel starvation, Journal of PowerSources, 2004, 130: 42.
[47] D. Natarajan, T. Van Nguyen, Current distribution in PEM fuel cells. Part 1: Oxygen and fuel flow rate effects, AIChE Journal, 2005, 51: 2587.
[48] Z. Liu, L. Yang, Z. Mao, W. Zhuge, Y. Zhang, L. Wang, Behavior of PEMFC in starvation, Journal of power sources, 2006,157: 166.
[49] T.W. Patterson, R.M. Darling, Damage to the cathode catalyst of a PEM fuel cell caused by localized fuel starvation, Electrochemical and Solid-State Letters, 2006, 9: A183.
[50] W.R. Baumgartner, P. Parz, S. Fraser, E. Wallnöfer, V. Hacker, Polarization study of a PEMFC with four reference electrodes at hydrogen starvation conditions, Journal of Power Sources,2008, 182: 413.
[51] H. Tang, Z. Qi, M. Ramani, J.F. Elter, PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode, Journal of Power Sources, 2006, 158:1306.
[52] J.P. Meyers, R.M. Darling, Model of carbon corrosion in PEM fuel cells, Journal of the Electrochemical Society, 2006, 153: A1432.
[53] S.S. Kocha, J. Deliang Yang, J.S. Yi, Characterization of gas crossover and its implications in PEM fuel cells, AIChE Journal, 2006, 52: 1916.
[54] A. Hernandez, D. Hissel, R. Outbib, Fuel cell fault diagnosis: A stochastic approach, Industrial Electronics, 2006 IEEE International Symposium on, IEEE, 2006, 1984.
[55] N. Yousfi-Steiner, P. Moçotéguy, D. Candusso, D. Hissel, A review on polymer electrolyte membrane fuel cell catalyst degradation and starvation issues: Causes, consequences and diagnostic for mitigation, Journal of Power Sources, 2009, 194: 130.
[56] A. LaConti, M. Hamdan, R. McDonald, Handbook of Fuel Cells–Fundamentals, Technology and Applications, Vol. 3, W. Vielstich, HA Gasteiger, and A. Lamm, Editors, John Wiley & Sons, 2003.
[57] T. Van Nguyen, M.W. Knobbe, A liquid water management strategy for PEM fuel cell stacks, Journal of Power Sources, 2003,114: 70.
[58] M. Saito, K. Hayamizu, T. Okada, Temperature dependence of ion and water transport in perfluorinated ionomer membranes for fuel cells, The Journal of Physical Chemistry B, 2005,109: 3112.
[59] S. Feldberg, C. Enke, C. Bricker, Formation and dissolution of platinum oxide film: Mechanism and kinetics, Journal of The Electrochemical Society, 1963, 110: 826.
[60] D. Rand, R. Woods, A study of the dissolution of platinum, palladium, rhodium and gold electrodes in 1 M sulphuric acid by cyclic voltammetry, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1972, 35: 209.
[61] L. Tang, B. Han, K. Persson, C. Friesen, T. He, K. Sieradzki, G. Ceder, Electrochemical stability of nanometer-scale Pt particles in acidic environments, Journal of the American Chemical Society, 2009, 132: 596.
[62] A. Lindsey, Pourbaix, M-Atlas of electrochemical equilibria in aqueous solutions, SOC CHEMICAL INDUSTRY 14 BELGRAVE SQUARE, LONDON SW1X 8PS, ENGLAND, 1966.
[63] H.A. Hansen, J. Rossmeisl, J.K. Nørskov, Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni (111) surfaces studied by DFT, Physical Chemistry Chemical Physics, 2008,10: 3722.
[64] K. Kodama, R. Jinnouchi, T. Suzuki, H. Murata, T. Hatanaka, Y. Morimoto, Increase in adsorptivity of sulfonate anions on Pt (111) surface with drying of ionomer, Electrochemistry Communications, 2013, 36: 26.
[65] B.K. Kakati, A. Unnikrishnan, N. Rajalakshmi, R. Jafri, K. Dhathathreyan, A.R. Kucernak, Recovery of Polymer Electrolyte Fuel Cell exposed to sulphur dioxide, International Journal of Hydrogen Energy, 2016, 41: 5598.
[66] B.K. Kakati, A.R. Kucernak, Gas phase recovery of hydrogen sulfide contaminated polymer electrolyte membrane fuel cells, Journal of Power Sources, 2014, 252: 317.
[67] B. Kakati, A. Kucernak, K. Fahy, Using corrosion-like processes to remove poisons from electrocatalysts: a viable strategy to chemically regenerate irreversibly poisoned polymer electrolyte fuel cells, Electrochimica Acta, 2016, 222: 888.
[68] K. Saikia, B.K. Kakati, B. Boro, A. Verma, Current Advances and Applications of Fuel Cell Technologies, Recent Advancements in Biofuels and Bioenergy Utilization, Springer, 2018, 303.
[69] K. Sehested, H. Corfitzen, J. Holcman, C.H. Fischer, E.J. Hart, The primary reaction in the decomposition of ozone in acidic aqueous solutions, Environmental Science & Technology, 1991, 25: 1589.
[70] K. Sehested, H. Corfitzen, J. Holcman, E.J. Hart, Decomposition of ozone in aqueous acetic acid solutions (pH 0-4), The Journal of Physical Chemistry, 1992, 96: 1005.
[71] G. Gupta, B. Wu, S. Mylius, G.J. Offer, A systematic study on the use of short circuiting for the improvement of proton exchange membrane fuel cell performance, International Journal of Hydrogen Energy, 2017, 42: 4320.
[72] Y. Zhan, Y. Guo, J. Zhu, L. Li, Current short circuit implementation for performance improvement and lifetime extension of proton exchange membrane fuel cell, Journal of Power Sources, 2014, 270: 183.
[73] A. Koschany, C. Lucas, T. Schwesinger, Gas diffusion electrode with reduced diffusing capacity for water and polymer electrolyte membrane fuel cells, Google Patents, 2002.
[74] M.T. Pearson, Apparatus for improving the performance of a fuel cell electric power system, Google Patents, 2009.
[75] M.T. Pearson, Method and apparatus for controlling voltage from a fuel cell system, Google Patents, 2005.
[76] J. Zhang, PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications, Springer Science & Business Media, 2008.
[77] N. Marković, T. Schmidt, V. Stamenković, P. Ross, Oxygen reduction reaction on Pt and Pt bimetallic surfaces: a selective review, Fuel cells, 2001, 1: 105.
[78] F. De Bruijn, V. Dam, G. Janssen, Durability and degradation issues of PEM fuel cell components, Fuel cells, 2008, 8: 3.
[79] H. Steininger, S. Lehwald, H. Ibach, Adsorption of oxygen on Pt (111), Surface Science, 1982, 123: 1.
[80] T. Zambelli, J. Barth, J. Wintterlin, G. Ertl, Complex pathways in dissociative adsorption of oxygen on platinum, Nature, 1997, 390: 495.
[81] J. Kim, D.-M. Kim, S.-Y. Kim, S.W. Nam, T. Kim, Humidification of polymer electrolyte membrane fuel cell using short circuit control for unmanned aerial vehicle applications, international journal of hydrogen energy, 2014, 39: 7925.
[82] C. Lombard, S. Le Doze, E. Marencak, P.-M. Marquaire, D. Le Noc, G. Bertrand, F. Lapicque, In situ regeneration of the Ni-based catalytic reformer of a 5 kW PEMFC system, International journal of hydrogen energy, 2006, 31: 437.
[83] J.R. Rostrup-Nielsen, Catalytic steam reforming, Catalysis, Springer1984, 1.
[84] T. Van Herwijnen, W. De Jong, Kinetics and mechanism of the CO shift on CuZnO: 1. Kinetics of the forward and reverse CO shift reactions, Journal ofCatalysis, 1980, 63: 83.
[85] J.R. Rostrup-Nielsen, Steam reforming catalysts: an investigation of catalysts for tubular steam reforming of hydrocarbons: a contribution from the Research Laboratory of Haldor Topsøe A/S, Teknisk Forlag, 1975.
[86] H.S. Bengaard, J.K. Nørskov, J. Sehested, B. Clausen, L. Nielsen, A. Molenbroek, J. Rostrup-Nielsen, Steam reforming and graphite formation on Ni catalysts, Journal of Catalysis, 2002, 209: 365.
[87] R.S. Treptow, Le Chatelier's principle: A reexamination and method of graphic illustration, Journal of Chemical Education, 1980, 57: 417.
[88] J.H. Jung, S.H. Kim, S.H. Hur, S.H. Joo, W.M. Choi, J. Kim, Polymer electrolyte membrane fuel cell performance degradation by coolant leakage and recovery, Journal of Power Sources, 2013, 226: 320.
[89] A.M. Abdullah, M.M. Saleh, M.I. Awad, T. Okajima, F. Kitamura, T. Ohsaka, Temperature effect on the recovery of SO 2-Poisoned GC/Nano-Pt electrode towards oxygen reduction, Journal of Solid State Electrochemistry, 2010, 14: 1727.
[90] I. Urdampilleta, F. Uribe, T. Rockward, E.L. Brosha, B. Pivovar, F.H. Garzon, PEMFC poisoning with H2S: dependence on operating conditions, ECS Transactions, 2007, 11: 831.
[91] W. Shi, B. Yi, M. Hou, F. Jing, P. Ming, Hydrogen sulfide poisoning and recovery of PEMFC Pt-anodes, Journal of power sources, 2007, 165: 814.
[92] C.-H. Chen, A. Halford, M. Walker, C. Brennan, S.C. Lai, D.J. Fermin, P.R. Unwin, P. Rodriguez, Electrochemical characterization and regeneration of sulfur poisoned Pt catalysts in aqueous media, Journal of Electroanalytical Chemistry, 2018, 816: 138.
[93] Y. Zhai, O. Baturina, D. Ramaker, E. Farquhar, J. St-Pierre, K. Swider-Lyons, Chlorobenzene poisoning andrecovery of platinum-based cathodes in proton exchange membrane fuel cells, The Journal of Physical Chemistry C, 2015, 119 20328.
[94] Y. Garsany, S. Dutta, K.E. Swider-Lyons, Effect of glycol-based coolants on the suppression and recovery of platinum fuel cell electrocatalysts, Journal of Power Sources, 2012, 216: 515.
[95] B. Gould, G. Bender, K. Bethune, S. Dorn, O. Baturina, R. Rocheleau, K. Swider-Lyons, Operational performance recovery of SO2-contaminated proton exchange membrane fuel cells, Journal of The Electrochemical Society, 2010, 157: B1569-.
[96] K. Franaszczuk, J. Sobkowski, The voltammetry of platinized platinum electrodes in aqueous Na2SO4, Journal of electroanalytical chemistry and interfacial electrochemistry, 1989, 261: 223.
[97] H.A. Gasteiger, N. Markovic, P.N. Ross Jr, E.J. Cairns, Methanol electrooxidation on well-characterized platinum-ruthenium bulk alloys, The Journal of Physical Chemistry, 1993, 97: 12020.
[98] P. Vanysek, Electrochemical series, CRC handbook of chemistry and physics, 2000, 8.
[99] J. Schüring, H.D. Schulz, W.R. Fischer, J. Böttcher, W.H. Duijnisveld, Redox: fundamentals, processes and applications, Springer Science & Business Media, 2013.
[100] J.P. Hoare, The normal oxygen potential on bright platinum, Journal of the Electrochemical Society, 1963, 110: 1019.
[101] M. Waje, W. Li, Z. Chen, P. Larsen, Y. Yan, Effect of Scan Range on Pt Surface Area Loss in Potential Cycling Experiments, ECS Transactions, 2007, 11: 1227.
[102] A.K.Z. Jürgen Hunger (ZSW), Ludwig Jörissen (ZSW), Test Module D-04: Stack Performance Recovery, 2015.
[103] M.M. Walczak, D.A. Dryer, D.D. Jacobson,
M.G. Foss, N.T. Flynn, ph dependent redox couple: An illustration of the nernst equation, Journal of chemical education, 1997, 74: 1195.