[1] A. Fujishima, K. Honda,” Photolysis-decomposition of water at the surface of an irradiated semiconductor”, Nature, 1972, 238: 37.
[2] A. El Ruby Mohamed, S. Rohani, “Modified TiO2 nanotube arrays (TNTAs): progressive strategies towards visible light responsive photoanode, a review”, Energy Environ. Sci, 2011, 4: 1065.
[3] A. A. Tahir, K. G. U. Wijayantha, S. Saremi-Yarahmadi, M. Mazhar, V. McKee, “Nanostructured α-Fe2O3 Thin Films for Photoelectrochemical Hydrogen Generation”, Chem. Mater, 2009, 21: 3763.
[4] L. Fu, H. Yu, C. Zhang, Z. Shao, B. Yi, “ Cobalt phosphate group modified hematite nanorod array as photoanode for efficient solar water splitting”, Electrochem Acta, 2014, 136: 363.
[5] M.A. Butler, “Photoelectrolysis and physical properties of the semiconducting electrode WO2”, J. Appl. Phys, 1977, 48: 1914.
[6] Q.B. Man, J.P. Hofmann, A. Litke, E.J.M. Hensen, “Cu2O photoelectrodes for solar water splitting: tuning photoelectrochemical performance by controlled faceting”, Sol. Energy Mater. Sol. Cells, 2015, 14: 178.
[7] H. Li, Y. Zeng, T. Huang, L. Piao, Z. Yan, M. Liu, “Hierarchical TiO2 Nanospheres with Dominant {001} Facets: Facile Synthesis, Growth Mechanism, and Photocatalytic Activity” Chem. Eur. J, 2012, 18: 7525.
[8] A. Fujishima, “Response to comments on efficient photochemical water splitting by a chemically modified n-TiO2", Science, 2003, 30: 1673.
[9] K. Maeda, K. Domen, “Isotopic and kinetic assessment of photocatalytic water splitting on Zn-added Ga2O3 photocatalyst loaded with Rh2− yCryO3 cocatalyst”, J. Phys. Chem. Lett, 2010, 1: 2655.
[10] M. G. Brian ORegan,”A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 1991, 353: 737.
[11] J. Jiqing, T. Jianguo, G. Wei, K. Daibin, T. Yexiang, C. Liuping, “Plasmonic silver nanoparticles matched with vertically aligned nitrogen-doped titanium dioxide nanotube arrays for enhanced photoelectrochemical activity”, Journal of Power Sources, 2015, 274: 464.
[12] H. Li, W. Zhang, S. Huang, W. Pan,” Enhanced visible-light-driven photocatalysis of surface nitrided electrospun TiO2 nanofibers”, Nanoscale, 2012, 4: 801.
[13] V.K. Sharma, R.A. Yngard, Y. Lin,”Silver nanoparticles: green synthesis and their antimicrobial activities”, Adv. Colloid Interface Sci, 2009, 145: 83.
[14] M.M. Khan, S.A. Ansari, M.O. Ansari, B.K. Min, J. Lee, M.H. Cho, “Biogenic Fabrication of Au@CeO2 Nanocomposite with Enhanced Visible Light Activity”, J. Phys. Chem. C, 2014, 118: 9477.
[15] M.M. Khan, J. Lee, M.H. Cho,”Au@ TiO2 nanocomposites for the catalytic degradation of methyl orange and methylene blue: an electron relay effect”, J. Ind. Eng. Chem, 2014, 20: 1584.
[16] S. Oros-Ruiz, R. Zanella, R. Lopez, A. Hernandez-Gordillo, R. Gomez, “Photocatalytic hydrogen production by water/methanol decomposition using Au/TiO2 prepared by deposition–precipitation with urea”, J. Hazard. Mater, 2013, 263: 1.
[17] R. Saravanan, S. Karthikeyan, V.K. Gupta, G. Sekaran, V. Narayanan, A. Stephen, “Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination”, Mater. Sci. Eng, 2013, 33: 91.
[18] R. Saravanan, V.K. Gupta, T. Prakash, V. Narayanan, A. Stephen, “Synthesis, characterization and photocatalytic activity of novel Hg doped ZnO nanorods prepared by thermal decomposition method”, J. Mol. Liq, 2013, 178: 88.
[19] R. Saravanan, V.K. Gupta, V. Narayanan, A. Stephen, J. Taiwan Inst, “Visible light degradation of textile effluent using novel catalyst ZnO/γ-Mn2O3”, Chem. Eng, 2014, 45: 1910.
[20] R. Saravanan, E. Thirumal, V.K. Gupta, V. Narayanan, A. Stephen, “The photocatalytic activity of ZnO prepared by simple thermal decomposition method at various temperatures”, J. Mol. Liq, 2013, 177: 394.
[21] R. Saravanan, H. Shankar, T. Prakash, V. Narayanan, A. Stephen, “ZnO/CdO composite nanorods for photocatalytic degradation of methylene blue under visible light”, Mater. Chem. Phys, 2011, 125: 277.
[22] E. Albiter, M.A. Valenzuela, S. Alfaro, G. Valverde-Aguilar , F.M. Martınez-Pallares, “Photocatalytic deposition of Ag nanoparticles on TiO2: Metal precursor effect on the structural and photoactivity properties”, Journal of Saudi Chemical Society, 2015, 19: 563.
[23] Z. Shan, J. Wu, F. Xu, F.-Q. Huang, H. Ding, “Highly effective silver/semiconductor photocatalytic composites prepared by a silver mirror reaction”, J. Phys. Chem. C, 2008, 112: 15423.
[24] S.A. Ansari, M.M. Khan, M.O. Ansari, J. Lee, M.H. Cho, “Biogenic synthesis, photocatalytic, and photoelectrochemical performance of Ag–ZnO nanocomposite”, J. Phys. Chem. C, 2013, 117: 27023.
[25] M.M. Khan, S.A. Ansari, M.I. Amal, J. Lee, M.H. Cho, “Highly visible light active Ag@ TiO2 nanocomposites synthesized using an electrochemically active biofilm: a novel biogenic approach”, Nanoscale, 2013, 5: 4427.
[26] M.M. Khan, S.A. Ansari, J.-H. Lee, M.O. Ansari, J. Lee, M.H. Cho, “Electrochemically active biofilm assisted synthesis of Ag@ CeO2 nanocomposites for antimicrobial activity, photocatalysis and photoelectrodes”, J. Colloid Interface Sci, 2014, 431: 255.
[27] H.R. Stuart, D.G. Hall, “Island size effects in nanoparticle-enhanced photodetectors”, Appl. Phys. Lett, 1998, 73: 3815.
[28] S. Mubeen, G. Hernandez-Sosa, D. Moses, J. Lee, M. Moskovits, “Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers”, Nano Lett, 2011, 11: 5548.
[29] Y. Tian, T. Tatsuma, “Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2”, Chem. Commun, 2004, 16: 1810.
[30] Y. Tian, T. Tatsuma, “Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles”, J. Am. Chem. Soc, 2005, 127: 7632.
[31] N. Chandrasekharan, P.V. Kamat, “Improving the Photoelectrochemical Performance of Nanostructured TiO2 Films by Adsorption of Gold Nanoparticles”, J. Phys. Chem. B, 2000, 104: 10851.
[32] A, Takai, P.V. Kamat, “Capture, Store, and Discharge. Shuttling Photogenerated Electrons across TiO2–Silver Interface”, ACS NANO, 2011, 5: 7369.
[33] J. Liu, F. Chen, “Plasmon enhanced photoelectrochemical activity of Ag–Cu nanoparticles on TiO2/Ti substrates”, Int. J. Electrochem. Sci, 2012, 7: 9560.
[34] N. Sakai, Y. Fujiwara, Y. Takahashi, T. Tatsuma, “Plasmon‐Resonance‐Based Generation of Cathodic Photocurrent at Electrodeposited Gold Nanoparticles Coated with TiO2 Films”, ChemPhysChem, 2009, 10: 766.
[35] A. Furube, L. Du, K. Hara, R. Katoh, M. Tachiya, “Ultrafast Plasmon-Induced Electron Transfer from Gold Nanodots into TiO2 Nanoparticles”, J. Am. Chem. Soc, 2007, 129: 14852.
[36] L. Liu, G, Wang, Y. Li, Y. Li, J.Z. Zhang, “CdSe quantum dot-sensitized Au/TiO2 hybrid mesoporous films and their enhanced photoelectrochemical performance”, Nano Res, 2011, 4: 249.
[37] V.V. Agrawal, P. Mahalakshmi, G.U. Kulkarni, C.N. Rao, “Nanocrystalline films of au− ag, au− cu, and au− ag− cu alloys formed at the organic− aqueous Interface”, Langmuir, 2006, 22: 1846.
[38] D.W. Gong, C.A. Grimes, O.K. Varghese, W.C. Hu, R.S. Singh, Z. Chen, E.C. Dickey, “Titanium oxide nanotube arrays prepared by anodic oxidation”, J. Mater. Res, 2001, 16: 3331.
[39] B. Wickman, Y.E. Seidel, Z. Jusys, B. Kasemo, R.J. Behm, “Fabrication of Pt/Ru nanoparticle pair arrays with controlled separation and their electrocatalytic properties”, ACS NANO, 2011, 5: 2547.
[40] J. Herrmann, J. Disdier, P. Pichat, A. Fernandez, A. Gonzalez-Elipe, G. Munuera, C. Leclercq, “Titania-supported bimetallic catalyst synthesis by photocatalytic codeposition at ambient temperature: Preparation and characterization of Pt Rh, Ag Rh, and Pt”, J. Catalysis, 1991, 132: 490.
[41] K. Mohammadi, A. Moshaii, M.Azimzadehirni, Z. Pourbakhsh, “Photoelectrochemical activity of Ag loaded TiO2 nanotube arrays produced by sequential chemical bath deposition for water splitting”, Journal of Materials Science: Materials in Electronics, 2019, 30: 1878.