Optimization of Ag loaded TiO2 nanotube arrays for plasmonic photoelectrochemical water splitting

Document Type : Research Paper


1 Nuclear Science and Technology Research Institute, Tehran, Iran

2 Department of Physics, Tarbiat Modares University, Tehran, P.O. Box 14115-175, Iran

3 Department of Physics, Tarbiat Modares University, Tehran


In this paper we report on a notable improvement of the photoelectrochemical (PEC) properties of highly ordered Ag loaded TiO2 nanotube arrays (Ag/TNT). Electrochemical anodization and sequential chemical bath deposition with an optimum ratio of precursors were employed for the production of an Ag/TNT nanocomposite. X-ray diffraction analysis (XRD) and scanning electron microscopy SEM images indicate that the Ag nanoparticles were deposited completely on the surface of the pore wall of TiO2 nanotube arrays. The photoelectrochemical measurements, including LSV, chronoamperometry and EIS, indicate that the Ag/TNT sample with a ratio of 1 precursors exhibited the maximum photoelectrochemical efficiency with a photocurrent density of about 300 µA, which is at least 3 times greater than a pure TNT sample. PEC and EIS measurements show that because of the localized surface plasmon resonance (LSPR) effects of Ag nanoparticles, an effective separation of photogenerated electron-hole pairs occurs that led to a reduction of charge transfer resistance at the interface and enhanced the PEC properties of the Ag/TNT sample.


Main Subjects

[1] A. Fujishima, K. Honda,” Photolysis-decomposition of water at the surface of an irradiated semiconductor”, Nature, 1972, 238: 37.
[2] A. El Ruby Mohamed, S. Rohani, “Modified TiO2 nanotube arrays (TNTAs): progressive strategies towards visible light responsive photoanode, a review”, Energy Environ. Sci, 2011, 4: 1065.
[3] A. A. Tahir, K. G. U. Wijayantha, S. Saremi-Yarahmadi, M. Mazhar, V. McKee, “Nanostructured α-Fe2O3 Thin Films for Photoelectrochemical Hydrogen Generation”, Chem. Mater, 2009, 21: 3763.
[4] L. Fu, H. Yu, C. Zhang, Z. Shao, B. Yi, “ Cobalt phosphate group modified hematite nanorod array as photoanode for efficient solar water splitting”, Electrochem Acta, 2014, 136: 363.
[5] M.A. Butler, “Photoelectrolysis and physical properties of the semiconducting electrode WO2”, J. Appl. Phys, 1977, 48: 1914.
[6] Q.B. Man, J.P. Hofmann, A. Litke, E.J.M. Hensen, “Cu2O photoelectrodes for solar water splitting: tuning photoelectrochemical performance by controlled faceting”, Sol. Energy Mater. Sol. Cells, 2015, 14: 178.
[7] H. Li, Y. Zeng, T. Huang, L. Piao, Z. Yan, M. Liu, “Hierarchical TiO2 Nanospheres with Dominant {001} Facets: Facile Synthesis, Growth Mechanism, and Photocatalytic Activity” Chem. Eur. J, 2012, 18: 7525.
[8] A. Fujishima, “Response to comments on efficient photochemical water splitting by a chemically modified n-TiO2", Science, 2003, 30: 1673.
[9] K. Maeda, K. Domen, “Isotopic and kinetic assessment of photocatalytic water splitting on Zn-added Ga2O3 photocatalyst loaded with Rh2− yCryO3 cocatalyst”,  J. Phys. Chem. Lett, 2010, 1: 2655.
[10] M. G. Brian ORegan,”A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 1991, 353: 737.
[11] J. Jiqing, T. Jianguo, G. Wei, K. Daibin, T. Yexiang, C. Liuping, “Plasmonic silver nanoparticles matched with vertically aligned nitrogen-doped titanium dioxide nanotube arrays for enhanced photoelectrochemical activity”, Journal of Power Sources, 2015, 274: 464.
[12] H. Li, W. Zhang, S. Huang, W. Pan,” Enhanced visible-light-driven photocatalysis of surface nitrided electrospun TiO2 nanofibers”, Nanoscale, 2012, 4: 801.
[13] V.K. Sharma, R.A. Yngard, Y. Lin,”Silver nanoparticles: green synthesis and their antimicrobial activities”, Adv. Colloid Interface Sci, 2009, 145: 83.
[14] M.M. Khan, S.A. Ansari, M.O. Ansari, B.K. Min, J. Lee, M.H. Cho, “Biogenic Fabrication of Au@CeO2 Nanocomposite with Enhanced Visible Light Activity”, J. Phys. Chem. C, 2014, 118:  9477.
[15] M.M. Khan, J. Lee, M.H. Cho,”Au@ TiO2 nanocomposites for the catalytic degradation of methyl orange and methylene blue: an electron relay effect”, J. Ind. Eng. Chem, 2014, 20: 1584.
[16] S. Oros-Ruiz, R. Zanella, R. Lopez, A. Hernandez-Gordillo, R. Gomez, “Photocatalytic hydrogen production by water/methanol decomposition using Au/TiO2 prepared by deposition–precipitation with urea”,  J. Hazard. Mater, 2013, 263: 1.
[17] R. Saravanan, S. Karthikeyan, V.K. Gupta, G. Sekaran, V. Narayanan, A. Stephen, “Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination”,  Mater. Sci. Eng, 2013, 33: 91.
[18] R. Saravanan, V.K. Gupta, T. Prakash, V. Narayanan, A. Stephen, “Synthesis, characterization and photocatalytic activity of novel Hg doped ZnO nanorods prepared by thermal decomposition method”, J. Mol. Liq, 2013, 178: 88.
[19] R. Saravanan, V.K. Gupta, V. Narayanan, A. Stephen, J. Taiwan Inst, “Visible light degradation of textile effluent using novel catalyst ZnO/γ-Mn2O3”, Chem. Eng, 2014, 45: 1910.
[20] R. Saravanan, E. Thirumal, V.K. Gupta, V. Narayanan, A. Stephen, “The photocatalytic activity of ZnO prepared by simple thermal decomposition method at various temperatures”,  J. Mol. Liq, 2013, 177: 394.
[21] R. Saravanan, H. Shankar, T. Prakash, V. Narayanan, A. Stephen, “ZnO/CdO composite nanorods for photocatalytic degradation of methylene blue under visible light”, Mater. Chem. Phys, 2011, 125:  277.
[22] E. Albiter, M.A. Valenzuela, S. Alfaro, G. Valverde-Aguilar , F.M. Martınez-Pallares, “Photocatalytic deposition of Ag nanoparticles on TiO2: Metal precursor effect on the structural and photoactivity properties”, Journal of Saudi Chemical Society, 2015, 19: 563.
[23] Z. Shan, J. Wu, F. Xu, F.-Q. Huang, H. Ding, “Highly effective silver/semiconductor photocatalytic composites prepared by a silver mirror reaction”, J. Phys. Chem. C, 2008, 112: 15423.
[24] S.A. Ansari, M.M. Khan, M.O. Ansari, J. Lee, M.H. Cho, “Biogenic synthesis, photocatalytic, and photoelectrochemical performance of Ag–ZnO nanocomposite”, J. Phys. Chem. C, 2013, 117: 27023.
[25] M.M. Khan, S.A. Ansari, M.I. Amal, J. Lee, M.H. Cho, “Highly visible light active Ag@ TiO2 nanocomposites synthesized using an electrochemically active biofilm: a novel biogenic approach”, Nanoscale, 2013, 5: 4427.
[26] M.M. Khan, S.A. Ansari, J.-H. Lee, M.O. Ansari, J. Lee, M.H. Cho, “Electrochemically active biofilm assisted synthesis of Ag@ CeO2 nanocomposites for antimicrobial activity, photocatalysis and photoelectrodes”, J. Colloid Interface Sci, 2014, 431: 255.
[27] H.R. Stuart, D.G. Hall, “Island size effects in nanoparticle-enhanced photodetectors”, Appl. Phys. Lett, 1998, 73: 3815.
[28] S. Mubeen, G. Hernandez-Sosa, D. Moses, J. Lee, M. Moskovits, “Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers”, Nano Lett, 2011, 11: 5548.
[29] Y. Tian, T. Tatsuma, “Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2”, Chem. Commun, 2004, 16: 1810.
[30] Y. Tian, T. Tatsuma, “Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles”, J. Am. Chem. Soc, 2005, 127: 7632.
[31] N. Chandrasekharan, P.V. Kamat, “Improving the Photoelectrochemical Performance of Nanostructured TiO2 Films by Adsorption of Gold Nanoparticles”, J. Phys. Chem. B, 2000, 104: 10851.
[32] A, Takai, P.V. Kamat, “Capture, Store, and Discharge. Shuttling Photogenerated Electrons across TiO2–Silver Interface”, ACS NANO, 2011, 5: 7369.
[33] J. Liu, F. Chen, “Plasmon enhanced photoelectrochemical activity of Ag–Cu nanoparticles on TiO2/Ti substrates”, Int. J. Electrochem. Sci, 2012, 7: 9560.
[34] N. Sakai, Y. Fujiwara, Y. Takahashi, T. Tatsuma, “Plasmon‐Resonance‐Based Generation of Cathodic Photocurrent at Electrodeposited Gold Nanoparticles Coated with TiO2 Films”, ChemPhysChem, 2009, 10: 766.
[35] A. Furube, L. Du, K. Hara, R. Katoh, M. Tachiya, “Ultrafast Plasmon-Induced Electron Transfer from Gold Nanodots into TiO2 Nanoparticles”, J. Am. Chem. Soc, 2007, 129: 14852.
[36] L. Liu, G, Wang, Y. Li, Y. Li, J.Z. Zhang, “CdSe quantum dot-sensitized Au/TiO2 hybrid mesoporous films and their enhanced photoelectrochemical performance”, Nano Res, 2011, 4: 249.
[37] V.V. Agrawal, P. Mahalakshmi, G.U. Kulkarni, C.N. Rao, “Nanocrystalline films of au− ag, au− cu, and au− ag− cu alloys formed at the organic− aqueous Interface”, Langmuir, 2006, 22:  1846.
[38] D.W. Gong, C.A. Grimes, O.K. Varghese, W.C. Hu, R.S. Singh, Z. Chen, E.C. Dickey, “Titanium oxide nanotube arrays prepared by anodic oxidation”, J. Mater. Res, 2001, 16: 3331.
[39] B. Wickman, Y.E. Seidel, Z. Jusys, B. Kasemo, R.J. Behm, “Fabrication of Pt/Ru nanoparticle pair arrays with controlled separation and their electrocatalytic properties”, ACS NANO, 2011, 5: 2547.
[40] J. Herrmann, J. Disdier, P. Pichat, A. Fernandez, A. Gonzalez-Elipe, G. Munuera, C. Leclercq, “Titania-supported bimetallic catalyst synthesis by photocatalytic codeposition at ambient temperature: Preparation and characterization of Pt Rh, Ag Rh, and Pt”, J. Catalysis, 1991, 132: 490.
[41] K. Mohammadi, A. Moshaii, M.Azimzadehirni, Z. Pourbakhsh, “Photoelectrochemical activity of Ag loaded TiO2 nanotube arrays produced by sequential chemical bath deposition for water splitting”, Journal of Materials Science: Materials in Electronics, 2019, 30: 1878.