[1] Xinhai X, Peiwen L, Yuesong S. Small-scale reforming of diesel and jet fuels to make hydrogen and syngas for fuel cells: A review. Appl Energy 2013;108:202–17.
[2] Lin J, Trabold TA, Walluk MR, Smith DF. Autothermal reforming of biodiesel-ethanol-diesel blends for solid oxide fuel cell applications. Energy and Fuels 2013;27:4371–85. https://doi.org/10.1021/ef302013d.
[3] Boaro M, Aricò AS. Advances in Medium and High Temperature Solid Oxide Fuel Cell Technology. CISM Int Cent Mech Sci Courses Lect 2017;574:119–53. https://doi.org/10.1007/978-3-319-46146-5_4.
[4] Kendall K, Kendall M. High-Temperature Solid Oxide Fuel Cells for the 21st Century: Fundamentals, Design and Applications: Second Edition. 2015. https://doi.org/10.1016/C2011-0-09278-5.
[5] Song C. Fuel processing for low-temperature and high-temperature fuel cells: Challenges, and opportunities for sustainable development in the 21st century. Catal Today 2002;77:17–49. https://doi.org/10.1016/S0920-5861(02)00231-6.
[6] Krumpelt M, Krause TR, Carter JD, Kopasz JP, Ahmed S. Fuel processing for fuel cell systems in transportation and portable power applications. Catal Today 2002;77:3–16.
[7] Takeguchi T, Kani Y, Yano T, Kikuchi R, Eguchi K, Tsujimoto K, et al. Study on steam reforming of CH4 and C2 hydrocarbons and carbon deposition on Ni-YSZ cermets. J Power Sources 2002;112:588–95. https://doi.org/10.1016/S0378-7753(02)00471-8.
[8] Abdenebi H, Zitouni B, Ben Moussa H, Haddad D. Thermal field in SOFC fed by CH4: Molar fractions effect. J Assoc Arab Univ Basic Appl Sci 2015;17:82–9. https://doi.org/10.1016/j.jaubas.2014.01.002.
[9] Lanzini A, Leone P. Experimental investigation of direct internal reforming of biogas in solid oxide fuel cells. Int J Hydrogen Energy 2010;35:2463–76. https://doi.org/10.1016/j.ijhydene.2009.12.146.
[10] Mogensen D, Grunwaldt JD, Hendriksen P V., Dam-Johansen K, Nielsen JU. Internal steam reforming in solid oxide fuel cells: Status and opportunities of kinetic studies and their impact on modelling. J Power Sources 2011;196:25–38. https://doi.org/10.1016/j.jpowsour.2010.06.091.
[11] Thallam Thattai A, van Biert L, Aravind P V. On direct internal methane steam reforming kinetics in operating solid oxide fuel cells with nickel-ceria anodes. J Power Sources 2017;370:71–86. https://doi.org/10.1016/j.jpowsour.2017.09.082.
[12] Park K, Lee S, Bae G, Bae J. Performance analysis of Cu, Sn and Rh impregnated NiO/CGO91 anode for butane internal reforming SOFC at intermediate temperature. Renew Energy 2015;83:483–90. https://doi.org/10.1016/j.renene.2015.04.070.
[13] Sohn S, Baek SM, Nam JH, Kim CJ. Two-dimensional micro/macroscale model for intermediate-temperature solid oxide fuel cells considering the direct internal reforming of methane. Int J Hydrogen Energy 2016;41:5582–97. https://doi.org/10.1016/j.ijhydene.2016.01.161.
[14] Schluckner C, Subotić V, Lawlor V, Hochenauer C. Three-dimensional numerical and experimental investigation of an industrial-sized SOFC fueled by diesel reformat - Part I: Creation of a base model for further carbon deposition modeling. Int J Hydrogen Energy 2014;39:19102–18. https://doi.org/10.1016/j.ijhydene.2014.09.108.
[15] Farnak M, Esfahani JA, Bozorgmehri S. An experimental design of the solid oxide fuel cell performance by using partially oxidation reforming of natural gas. Renew Energy 2020;147:155–63. https://doi.org/10.1016/j.renene.2019.08.116.
[16] Fan L, Van Biert L, Thallam Thattai A, Verkooijen AHM, Aravind P V. Study of Methane Steam Reforming kinetics in operating Solid Oxide Fuel Cells: Influence of current density. Int J Hydrogen Energy 2015;40:5150–9. https://doi.org/10.1016/j.ijhydene.2015.02.096.
[17] Park J, Li P, Bae J. Analysis of chemical, electrochemical reactions and thermo-fluid flow in methane-feed internal reforming SOFCs: Part II-temperature effect. Int J Hydrogen Energy 2012;37:8532–55. https://doi.org/10.1016/j.ijhydene.2012.02.109.
[18] Ahmed K, Fӧger K. Analysis of equilibrium and kinetic models of internal reforming on solid oxide fuel cell anodes: Effect on voltage, current and temperature distribution. J Power Sources 2017;343:83–93. https://doi.org/10.1016/j.jpowsour.2017.01.039.
[19] Chalusiak M, Wrobel M, Mozdzierz M, Berent K, Szmyd JS, Kimijima S, et al. A numerical analysis of unsteady transport phenomena in a Direct Internal Reforming Solid Oxide Fuel Cell. Int J Heat Mass Transf 2019;131:1032–51. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.113.
[20] van Biert L, Godjevac M, Visser K, Aravind P V. Dynamic modelling of a direct internal reforming solid oxide fuel cell stack based on single cell experiments. Appl Energy 2019;250:976–90. https://doi.org/10.1016/j.apenergy.2019.05.053.
[21] Wang S, Worek WM, Minkowycz WJ. Performance comparison of the mass transfer models with internal reforming for solid oxide fuel cell anodes. Int J Heat Mass Transf 2012;55:3933–45. https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.024.
[22] Joshi AS, Grew KN, Peracchio AA, Chiu WKS. Lattice Boltzmann modeling of 2D gas transport in a solid oxide fuel cell anode. J Power Sources 2007;164:631–8. https://doi.org/10.1016/j.jpowsour.2006.10.101.
[23] Xu H, Dang Z, Bai BF. Numerical simulation of multispecies mass transfer in a SOFC electrodes layer using lattice boltzmann method. J Fuel Cell Sci Technol 2012;9. https://doi.org/10.1115/1.4007791.
[24] Paradis H, Andersson M, Sundén B. Lattice Boltzmann modeling of advection-diffusion transport with electrochemical reactions in a porous SOFC anode structure. Int. Conf. Fuel Cell Sci. Eng. Technol., vol. 55522, 2013, p. V001T02A002.
[25] Joshi AS, Grew KN, Izzo JR, Peracchio AA, Chiu WKS. Lattice Boltzmann Modeling of three-dimensional, Multi-Component Mass Diffusion in a Solid Oxide Fuel Cell Anode. J Fuel Cell Sci Technol 2010;7:0110061–8. https://doi.org/10.1115/1.3117251.
[26] Paradis H, Sundén B. Evaluation of lattice boltzmann method for reaction-diffusion process in a porous SOFC anode microstructure. ASME 2012 10th Int Conf Nanochannels, Microchannels, Minichannels Collocated with ASME 2012 Heat Transf Summer Conf ASME 2012 Fluids Eng Div Sum, ICNMM 2012 2012:163–71. https://doi.org/10.1115/ICNMM2012-73163.
[27] Hamadou D Ben, Elleuch A, Halouani K. LATTICE BOLTZMANN PROGRESSIVE MODELING OF MASS AND HEAT TRANSFER IN THE ANODE POROUS MICRO-STRUCTURE OF A SOLID OXIDE FUEL CELL. Int J Energy, Environ Econ 2017;25:127–52.
[28] Xu H, Dang Z. Lattice Boltzmann modeling of carbon deposition in porous anode of a solid oxide fuel cell with internal reforming. Appl Energy 2016;178:294–307. https://doi.org/10.1016/j.apenergy.2016.06.007.
[29] Xu H, Dang Z, Bai BF. Electrochemical performance study of solid oxide fuel cell using lattice Boltzmann method. Energy 2014;67:575–83. https://doi.org/10.1016/j.energy.2014.02.021.
[30] Yahya A, Rabhi R, Dhahri H, Slimi K. Numerical simulation of temperature distribution in a planar solid oxide fuel cell using lattice Boltzmann method. Powder Technol 2018;338:402–15. https://doi.org/10.1016/j.powtec.2018.07.060.
[31] Chiu WKS, Joshi AS, Grew KN. Lattice Boltzmann model for multi-component mass transfer in a solid oxide fuel cell anode with heterogeneous internal reformation and electrochemistry. Eur Phys J Spec Top 2009;171:159–65. https://doi.org/10.1140/epjst/e2009-01024-8.
[32] Delavar MA, Farhadi M, Sedighi K. Numerical simulation of direct methanol fuel cells using lattice Boltzmann method. Int J Hydrogen Energy 2010;35:9306–17. https://doi.org/10.1016/j.ijhydene.2010.02.126.
[33] Ajarostaghi SSM, Delavar MA, Poncet S. Thermal mixing, cooling and entropy generation in a micromixer with a porous zone by the lattice Boltzmann method. J Therm Anal Calorim 2020;140:1321–39. https://doi.org/10.1007/s10973-019-08386-3.
[34] Mehrizi AA, Farhadi M, Sedighi K, Delavar MA. Effect of fin position and porosity on heat transfer improvement in a plate porous media heat exchanger. J Taiwan Inst Chem Eng 2013;44:420–31. https://doi.org/10.1016/j.jtice.2012.12.018.
[35] Ivanov P. Thermodynamic modeling of the power plant based on the SOFC with internal steam reforming of methane. Electrochim Acta 2007;52:3921–8. https://doi.org/10.1016/j.electacta.2006.11.009.
[36] Brus G, Szmyd JS. Numerical modelling of radiative heat transfer in an internal indirect reforming-type SOFC. J Power Sources 2008;181:8–16. https://doi.org/10.1016/j.jpowsour.2007.12.064.
[37] Wang Y, Zhan R, Qin Y, Zhang G, Du Q, Jiao K. Three-dimensional modeling of pressure effect on operating characteristics and performance of solid oxide fuel cell. Int J Hydrogen Energy 2018;43:20059–76. https://doi.org/10.1016/j.ijhydene.2018.09.025.
[38] Poling BE, Prausnitz JM, O’connell JP, others. The properties of gases and liquids. vol. 5. Mcgraw-hill New York; 2001.
[39] Aydın Ö, Kubota A, Tran DL, Sakamoto M, Shiratori Y. Designing graded catalytic domain to homogenize temperature distribution while dry reforming of CH4. Int J Hydrogen Energy 2018;43:17431–43. https://doi.org/10.1016/j.ijhydene.2018.07.084.
[40] Albrecht KJ, Braun RJ. The effect of coupled mass transport and internal reforming on modeling of solid oxide fuel cells part I: Channel-level model development and steady-state comparison. J Power Sources 2016;304:384–401. https://doi.org/10.1016/j.jpowsour.2015.11.043.
[41] Hajimolana SA, Hussain MA, Daud WMAW, Soroush M, Shamiri A. Mathematical modeling of solid oxide fuel cells: A review. Renew Sustain Energy Rev 2011;15:1893–917. https://doi.org/10.1016/j.rser.2010.12.011.
[42] Mohamad AA. Lattice Boltzmann Method. vol. 70. Springer; 2011.
[43] Sabri E. Fluid flow through packed columns. Chem Eng Prog 1952;48:89–94.
[44] Ni M. Modeling of SOFC running on partially pre-reformed gas mixture. Int J Hydrogen Energy 2012;37:1731–45. https://doi.org/10.1016/j.ijhydene.2011.10.042.
[45] Ni M, Leung MKH, Leung DYC. Parametric study of solid oxide fuel cell performance. Energy Convers Manag 2007;48:1525–35. https://doi.org/10.1016/j.enconman.2006.11.016.
[46] Menon V, Banerjee A, Dailly J, Deutschmann O. Numerical analysis of mass and heat transport in proton-conducting SOFCs with direct internal reforming. Appl Energy 2015;149:161–75. https://doi.org/10.1016/j.apenergy.2015.03.037.
[47] Bove R, Ubertini S. Modeling solid oxide fuel cells: methods, procedures and techniques. Springer Science & Business Media; 2008.
[48] Chan SH, Khor KA, Xia ZT. Complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness. J Power Sources 2001;93:130–40. https://doi.org/10.1016/S0378-7753(00)00556-5.
[49] Hernández-Pacheco E, Singh D, Hutton PN, Patel N, Mann MD. A macro-level model for determining the performance characteristics of solid oxide fuel cells. J Power Sources 2004;138:174–86. https://doi.org/10.1016/j.jpowsour.2004.06.051.
[50] Ni M, Leung DYC, Leung MKH. Modeling of methane fed solid oxide fuel cells: Comparison between proton conducting electrolyte and oxygen ion conducting electrolyte. J Power Sources 2008;183:133–42. https://doi.org/10.1016/j.jpowsour.2008.04.073.