[1] Lu X., Luo F., Song H., Liao Sh., Li H., “Pulse electrodeposition to prepare core-shell structured AuPt@Pd/C catalyst for formic acid fuel cell application”, J. Power Sources, 2014, 246: 659.
[2] Zhu F., Wang M., He Y., Guanshui M., Zhang Zh., Wang X., “A comparative study of elemental additives (Ni, Co and Ag) on electrocatalytic activity improvement of PdSn-based catalysts for ethanol and formic acid electro-oxidation”, Electrochim Acta, 2014, 148: 291.
[3] Caballero-Manrique G., Vel´azquez-Palenzuela A., Brillas E., Centellas F., Garrido J. A., Rodrı´guez R. M., Cabot P. L., “Electrochemical synthesis and characterization of carbon-supported Pt and Pt-Ru nanoparticles with Cu cores for CO and methanol oxidation in polymer electrolyte fuel cells”, Int. J. Hydrogen Energy, 2014, 39: 12859.
[4] Wang X., Ma G., Zhu F., Lin N., Tang B., Zhang Zh., “Preparation and characterization of micro-arc-induced Pd/TM (TM =Ni, Co and Ti) catalysts and comparison of their electrocatalytic activities toward ethanol oxidation”, Electrochim Acta, 2013, 114: 500.
[5] Zhang M., Yan Z., Xie J., “Core/shell Ni@Pd nanoparticles supported on MWCNTs at improved electrocatalytic performance for alcohol oxidation in alkaline media”, Electrochim Acta, 2012, 77: 237.
[6] Wang H., Wang R., Li H., Wang Q., Kang J., Lei Z., “Facile synthesis of carbon-supported pseudo-core@shell PdCu@Pt nanoparticles for direct methanol fuel cells”, Int. J. Hydrogen Energy, 2011, 36: 839.
[7] Chaudhuri R. Gh., Paria S., “Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications”, Chem. Rev, 2012, 112: 2373.
[8] Ciszewski A., Milczarek G., “Kinetics of electrocatalytic oxidation of formaldehyde on a nickel porphyrin-based glassy carbon electrode”, J. Electroanal Chem, 1999, 469: 18.
[9] Habibi B., Delnavaz N., “Carbon-ceramic supported bimetallic Pt-Ni nanoparticles as an electrocatalyst for oxidation of formic acid”, Int. J. Hydrogen Energy, 2011, 36: 9581.
[10] Chen Y., Yang F., Dai Y., Wang W., Chen Sh., “Ni@Pt Core−Shell Nanoparticles: Synthesis, Structural and Electrochemical Properties”, J. Phys. Chem. C, 2008, 112: 1645.
[11] Wang G., Wu H., Wexler D., Liu H., Savadogo O., “Ni@Pt core–shell nanoparticles with enhanced catalytic activity for oxygen reduction reaction” J. Alloys Compd, 2010, 503: L1.
[12] Cantane D.A., Oliveira F. E. R., Santos S. F., Lima F. H. B., “Synthesis of Pt-based hollow nanoparticles using carbon-supported Co@Pt and Ni@Pt core–shell structures as templates: Electrocatalytic activity for the oxygen reduction reaction”, Appl. Catal. B: Environmental, 2013, 136: 351.
[13] Ding L-X., Li G-R., Wang Z-L., Liu Zh-Q., Liu H., Tong Y-X., “Porous Ni@Pt Core-Shell Nanotube Array Electrocatalyst with High Activity and Stability for Methanol Oxidation”, Chem. Eur. J, 2012, 18: 8386.
[14] Fu X-Zh., Liang Y., Chen Sh-P., Lin J-D., Liao D-W., “Pt-rich shell coated Ni nanoparticles as catalysts for methanol electro-oxidation in alkaline media”, Catal. Commun, 2009, 10: 1893.
[15] Bhlapibul S., Pruksathorn K., Piumsomboon P., “The effect of the stabilizer on the properties of a synthetic Nicore–Ptshell catalyst for PEM fuel cells”, Renewable Energy, 2012, 41: 262.
[16] Sa´nchez-Padilla N. M., Montemayor S. M., Torres L. A., Rodrı´guez Varela F. J., “Fast synthesis and electrocatalytic activity of M@Pt (M [Ru, Fe3O4, Pd]) core-shell nanostructures for the oxidation of ethanol and methanol”, Int. J. Hydrogen Energy, 2013, 38: 12681.
[17] Habibi B., Dadashpour E., “Carbon-ceramic supported bimetallic Pt–Ni nanoparticles as an electrocatalyst for electrooxidation of methanol and ethanol in acidic media”, Int. J. Hydrogen Energy, 2013, 38: 5425.
[18] Li Z., He Ch., Caib M., Kang Sh., Shen P. K., “A strategy for easy synthesis of carbon supported Co@Pt core-shell configuration as highly active catalyst for oxygen reduction reaction”, Int. J. Hydrogen Energy, 2012, 37: 14152.
[19] Ruiz Camachoa B., Moraisa C., Valenzuela M. A., Alonso-Vantea N., “Enhancing oxygen reduction reaction activity and stability of platinum via oxide-carbon composites”, Catal Today, 2013, 202: 36.
[20] Xu W., Zhua Sh., Li Zh., Cui Zh., Yang X., “Synthesis and catalytic properties of Pd nanoparticles loaded nanoporous TiO2 material”, Electrochim Acta, 2013, 114: 35.
[21] Li Sh. Sh., Hu Y. Y., Feng J. J., Lv Z. Y., Chen J. R., Wang A. J., “Rapid room-temperature synthesis of Pd nanodendrites on reduced graphene oxide for catalytic oxidation of ethylene glycol and glycerol”, Int. J. Hydrogen Energy, 2014, 39: 3730.
[22] Lin R., Cao Ch., Zhao T., Huang Zh., Li B., Wieckowski A., Ma J., “Synthesis and application of core-shell Co@Pt/C electrocatalysts for proton exchange membrane fuel cells”, J. Power Sources, 2013, 223: 190.
[23] Santiago E. I., Varanda L. C., Villullas M. J., “Carbon-supported Pt-Co catalyst prepared by a modified polyol process as cathodes for PEM fuel cells”, J. Phys. Chem. C, 2007, 111: 3146.
[24] Divya P., Ramaprabhu S., “Platinum nanoparticles supported on a bi-metal oxide grown carbon nanostructure as an ethanol electro-oxidation electrocatalyst”, J. Mater. Chem. A, 2013, 1: 13605.
[25] Hasan M., Newcomb S. B., Razeeb K. M., “Porous Core/Shell Ni@NiO/Pt Hybrid Nanowire Arrays as a High Efficient Electrocatalyst for Alkaline Direct Ethanol Fuel Cells”. J. Electrochem. Soc. 2012, 159: F203.
[26] Gao H., Liao Sh., Liang Zh., Liang H., Luo F., “Anodic oxidation of ethanol on core-shell structured Ru@PtPd/C catalyst in alkaline media”. J. Power Sources, 2011, 196 :6138.
[27] Zhang Z. Y., Xin L., Sun K., Li W. Z., “Pd–Ni electrocatalysts for efficient ethanol oxidation reaction in alkaline electrolyte”, Int. J. Hydrogen Energy, 2011, 36: 12686.
[28] Fashedemi O. O., Ozoemena K. I., “Comparative electrocatalytic oxidation of ethanol, ethylene glycol andglycerol in alkaline medium at Pd-decorated FeCo@Fe/C core-shellnanocatalysts”, Electrochim Acta, 2014, 128: 279.
[29] Wei Y.-C., Liu C.-W., Kang W.-D., Lai C.-M., Tsai L.-D., Wang K.-W., “Electro-catalytic activity enhancement of Pd–Ni electrocatalysts for the ethanolelectro-oxidation in alkaline medium: The promotional effect of CeO2 addition”, J. Electroanal. Chem, 2011, 660: 64.
[30] Jin H., Wang D., Zhao Y., Zhou H., Wang Sh., Wang J., “Fabrication of Te@Au core-shell hybrids for efficient ethanol oxidation”, J. Power Sources, 2012, 215: 227.
[31] Yang S., Zhang X., Mi H., Ye X., “Pd nanoparticles supported on functionalized multi-wall carbon nanotubes (MWCNTs) and electrooxidation for formic acid”, J. Power Sources, 2008, 175: 26.
[32] Wang J. Y., Kang Y. Y., Yang H., Cai W. B., “Boron-doped palladium nanoparticleson carbon black as a superior catalyst for formic acid electro-oxidation”, J. Phys. Chem C, 2009, 113: 8366.
[33] Abbaspour A., Norouz-Sarvestani F., “High electrocatalytic effect of Au-Pd alloy nanoparticles electrodeposited on microwave assisted sol-gel-derived carbon ceramic electrode for hydrogen evolution reaction”, Int. J. Hydrogen Energy, 2013, 38: 1883.
[34] Wang X. M., Xia Y. Y., “The influence of the crystal structure of TiO2 support material on Pd catalysts for formic acid electrooxidation”, Electrochim Acta, 2010, 55: 851.
[35] Zang J., Dong L., Jia Y., Pan H., Gao Zh., Wang Y., “Core-shell structured SiC@C supported platinum electrocatalysts for direct methanol fuel cells”, Appl Catal B Environ, 2014, 11: 166.
[36] Zhang X., Zhu H., Guo Zh., Wei Y., Wang F., “Design and preparation of CNT@SnO2 core-shell composites with thin shell and its application for ethanol oxidation”, Int. J. Hydrogen Energy, 2010, 35: 8841.