[1] International Energy Agency (IEA). “International Energy Outlook 2014”, Website:
<www.eia.gov/forecasts/ieo/index.cfm>; [last accessed 5.10.2015].
[2] Acar C. and Dincer I., “Comparative assessment of hydrogen production methods from
renewable and non-renewable sources”, Int J Hydrogen Energy, 2014, 39(1): 1.
[3] Skonieczny M. T. and Yargeau V., “Biohydrogen production from wastewater by
Clostridium beijerinckii: effect of pH and substrate concentration”, Int J Hydrogen Energy,
2009, 34(8): 3288.
[4] Chong M. L., Sabaratnam V., Shirai Y. and Hassan M. A., “Biohydrogen production from
biomass and industrial wastes by dark fermentation”, Int J Hydrogen Energy, 2009, 34(8):
3277.
[5] Zhang Y. and Angelidaki I., “Microbial electrolysis cells turning to be versatile technology:
Recent advances and future challenges”, Water Res, 2014, 56(1): 11.
[6] Kadier A., Simayi Y., Kalil M. S., Abdeshahian P. and Hamid, A. A., “A review of the
substrates used in microbial electrolysis cells (MECs) for producing sustainable and clean
hydrogen gas”, Renew Energ, 2014, 71: 466.
[7] Pant D., Singh A., Bogaert G. V., Olsen S. I., Nigam P. S., Diels L. and Vanbroekhoven K.,
“Bioelectrochemical systems (BES) for sustainable energy production and product recovery
from organic wastes and industrial wastewaters”, RSC Adv, 2012, 2(4): 1248.
[8] Rozendal R. A., Hamelers H. V. M., Euverink G. J. W., Metz S. J. and Buisman C. J. N.,
“Principle and perspectives of hydrogen production through biocatalyzed electrolysis”, Int J
Hydrogen Energy, 2006, 31(12): 1632.
[9] Cheng S. and Logan B. E., “Sustainable and efficient biohydrogen production via
Electrohydrogenesis”, Proc Natl Acad Sci USA, 2007, 104(47): 18871.
[10] Hu H., Fan Y. and Liu H., “Hydrogen production using single-chamber membrane-free
microbial electrolysis cells”, Water Res, 2008, 42(15): 4172.
[11] Call D. F. and Logan B. E., “Hydrogen production in a single chamber microbial
electrolysis cell (MEC) lacking a membrane”, Environ Sci Technol, 2008, 42(9): 3401.
[12] Liu H., Grot S. and Logan B. E., “Electrochemically assisted production of hydrogen from
acetate”, Environ Sci Technol, 2005, 39(11): 4317.
[13] Cheng S. and Logan B. E., “High hydrogen production rate of microbial electrolysis cell
(MEC) with reduced electrode spacing”, Bioresour Technol, 2011, 102(3): 3571.
[14] Kyazze G., Popov A., Dinsdale R., Esteves S., Hawkes F., Premier G. and Guwy A.,
“Influence of catholyte pH and temperature on hydrogen production from acetate using a two
chamber concentric tubular microbial electrolysis cell”, Int J Hydrogen Energy, 2010,
35(15): 7716.
[15] Ribot-Llobet E., Nam J-Y., Tokash J. C., Guisasola A. and Logan B. E., “Assessment of
four different cathode materials at different initial pHs using unbuffered catholytes in
microbial electrolysis cells”, Int J Hydrogen Energy, 2013, 38(7): 2951.
[16] Nam J-Y. and Logan B. E., “Optimization of catholyte concentration and anolyte pHs in two
chamber microbial electrolysis cells”, Int J Hydrogen Energy, 2012, 37(24): 18622.
[17] Wang A., Liu W., Ren N., Zhou J. and Cheng S., “Key factors affecting microbial anode
potential in a microbial electrolysis cell for H2 production”, Int J Hydrogen Energy, 2010,
35(24): 13481.
[18] Merrill M. D. and Logan B. E., “Electrolyte effects on hydrogen evolution and solution
resistance in microbial electrolysis cells”, J Power Sources, 2009, 191(2): 203.
[19] Yossan S., Xiao L., Prasertsan P. and He Z., “Hydrogen production in microbial electrolysis
cells: choice of catholyte”, Int J Hydrogen Energy, 2013, 38(23): 9619.
[20] Sun R., Xing D., Jia J., Liu Q., Zhou A., Bai S. and Ren N., “Optimization of high-solid
waste activated sludge concentration for hydrogen production in microbial electrolysis cells
and microbial community diversity analysis”, Int J Hydrogen Energy, 2014, 39(35): 19912.
[21] Ren L., Siegert M., Ivanov I., Pisciotta J. M. and Logan B. E., “Treatability studies on
different refinery wastewater samples using high throughput microbial electrolysis cells
(MECs)”, Bioresour Technol, 2013, 136: 322.
[22] Ren L., Tokash J. C., Regan J. M. and Logan B. E., “Current generation in microbial
electrolysis cells with addition of amorphous ferric hydroxide, Tween 80, or DNA”, Int J
Hydrogen Energy, 2012, 37(22): 16943.
[23] Logan B. E., Call D., Cheng S., Hamelers H. V. M., Sleutels T. H. J. A. and Jeremiasse A.
W., “Microbial electrolysis cells for high yield hydrogen gas production from organic
matter”, Environ Sci Technol, 2008, 42(23): 8630.
[24] Sleutels T. H. J. A., Ter Heijne A., Buisman C. J. N. and Hamelers H. V. M., “Steady-state
performance and chemical efficiency of microbial electrolysis cells”, Int J Hydrogen Energy,
2013, 38(18): 7201.
[25] Mao L. and Verwoerd W. S., “Selection of organisms for systems biology study of
microbial electricity generation: a review”, Int J Energy Environ Eng, 2013, 4: 1.
[26] Di Lorenzo M., Scott K., Curtis T. P. and Head I. M., “Effect of increasing anode surface
area on the performance of a single chamber microbial fuel cell”, Chem Eng J, 2010, 156(1):
40.
[27] Sadeqzadeh M., Ghasemi M., Ghannadzadeh A., Salamatinia B., Jafary T. and Ramli W.,
“Mass transfer limitation in different anode electrode surface areas on the performance of
dual chamber microbial fuel cell”, Am. J Biochem Biotechnol, 2012, 8(4): 320.
[28] Picioreanu C., Head I. M., Katuri K. P., Van Loosdrecht M. C. M. and Scott K., “A
computational model for biofilm-based microbial fuel cells”, Water Res, 2007, 41(13): 2921.
[29] Cheng S., Liu H. and Logan B. E., “Increased power generation in a continuous flow MFC
with advective flow through the porous anode and reduced electrode spacing”, Environ Sci
Technol, 2006, 40(7): 2426.
[30] Gadhe A., Sonawane S. S. and Varma M. N., “Optimization of conditions for hydrogen
production from complex dairy wastewater by anaerobic sludge using desirability function
approach”, Int J Hydrogen Energy, 2013, 38(16): 6607.
[31] Hawkes F. R., Dinsdale R., Hawkes D. L. and Hussy I., “Sustainable fermentative hydrogen
fermentation: challenges for process optimization”, Int J Hydrogen Energy, 2002, 27(11-12):
1339.
[32] Junghare M., Subudhi S. and Lal B., “Improvement of hydrogen production under decreased
partial pressure by newly isolated alkaline tolerant anaerobe, Clostridium butyricum TM-9A:
Optimization of process parameters”, Int J Hydrogen Energy, 2012, 37(4): 3160.