How to Design a Cryogenic Joule-Thomson Cooling System: Case Study of Small Hydrogen Liquefier

Document Type : Research Paper


Malek Ashtar University of Technology


Heat exchangers are the critical components of refrigeration and liquefaction processes. Selection of appropriate operational conditions for cryogenic recuperative heat exchanger and expansion valve operating in Joule-Thomson cooling system results in improving the performance and efficiency. In the current study, a straightforward procedure is introduced to design an efficient Joule-Thomson cooling system. Determining the appropriate operational conditions and configuration of streams within the recuperative heat exchanger are discussed comprehensively. A Joule-Thomson cooling system including helically coiled tube in tube heat exchanger and expansion valve was considered as a case study. Simulation was performed by procedure different from conventional finite element method and the results were validated versus data obtained from small laboratory hydrogen liquefier. In accordance with mathematical modeling performed on the recuperative heat exchanger, it is better to flow low pressure hydrogen inside the inner tube and high pressure hydrogen within the annulus. This arrangement results in needing shorter length for heat exchanger tubes compared with reverse arrangement..


Main Subjects

1.         Zhu W.,   White M. J.,   Nellis G. F.,   Klein S. A.,Gianchandani Y. B. A Joule-Thomson cooling system with a Si/glass heat exchanger for 0.1–1 w heat loads. in Solid-State Sensors, Actuators and Microsystems Conference, 2009. TRANSDUCERS 2009. International. 2009. IEEE.
2.         Maytal B.-Z.,   Nellis G.,   Klein S.,Pfotenhauer J., "Elevated-pressure mixed-coolants Joule–Thomson cryocooling", Cryogenics, 2006, 46(1), 55.
3.         Croft A., "The new hydrogen liquefier at the Clarendon Laboratory", Cryogenics, 1964, 4(3), 143.
4.         Prina M.,   Borders J.,   Bhandari P.,   Morgante G.,   Pearson D.,Paine C., "Low-heat input cryogenic temperature control with recuperative heat-exchanger in a Joule Thomson cryocooler", Cryogenics, 2004, 44(6), 595.
5.         Barron R. F.,   Nellis G.,Pfotenhauer J. M., Cryogenic heat transfer. 1999: CRC Press.
6.         Stephens S., "Advanced design of Joule-Thomson coolers for infra-red detectors", Infrared Physics, 1968, 8(1), 25.
7.         Chien S.,   Chen L.,Chou F., "A study on the transient characteristics of a self-regulating Joule-Thomson cryocooler", Cryogenics, 1996, 36(12), 979.
8.         Levenduski R.,Scarlotti R. D. Development of a Joule-Thomson cryocooler for space applications. in SPIE's International Symposium on Optical Engineering and Photonics in Aerospace Sensing. 1994. International Society for Optics and Photonics.
9.         Chua H. T.,   Wang X.,Teo H. Y., "A numerical study of the Hampson-type miniature Joule–Thomson cryocooler", Int. J. Heat Mass Transfer, 2006, 49(3), 582.
10.       Damle R.,Atrey M., "Transient simulation of a miniature Joule-Thomson (JT) cryocooler with and without the distributed JT effect", Cryogenics, 2014,
11.       Pacio J. C.,Dorao C. A., "A review on heat exchanger thermal hydraulic models for cryogenic applications", Cryogenics, 2011, 51(7), 366.
12.       Aminuddin M.,Zubair S. M., "Characterization of various losses in a cryogenic counterflow heat exchanger", Cryogenics, 2014, 6477.
13.       Krishna V.,   Spoorthi S.,   Hegde P. G.,Seetharamu K., "Effect of longitudinal wall conduction on the performance of a three-fluid cryogenic heat exchanger with three thermal communications", Int. J. Heat Mass Transfer, 2013, 62567.
14.       Gupta P. K.,   Kush P.,Tiwari A., "Second law analysis of counter flow cryogenic heat exchangers in presence of ambient heat-in-leak and longitudinal conduction through wall", Int. J. Heat Mass Transfer, 2007, 50(23), 4754.
15.       Nellis G., "A heat exchanger model that includes axial conduction, parasitic heat loads, and property variations", Cryogenics, 2003, 43(9), 523.
16.       Narayanan S. P.,Venkatarathnam G., "Performance of a counterflow heat exchanger with heat loss through the wall at the cold end", Cryogenics, 1999, 39(1), 43.
17.       Ranganayakulu C.,   Seetharamu K.,Sreevatsan K., "The effects of longitudinal heat conduction in compact plate-fin and tube-fin heat exchangers using a finite element method", Int. J. Heat Mass Transfer, 1997, 40(6), 1261.
18.       Damle R.,Atrey M., "The cool-down behaviour of a miniature Joule–Thomson (J–T) cryocooler with distributed J–T effect and finite reservoir capacity", Cryogenics, 2015, 7147.
19.       Chou F.-C.,   Pai C.-F.,   Chien S.,Chen J., "Preliminary experimental and numerical study of transient characteristics for a Joule-Thomson cryocooler", Cryogenics, 1995, 35(5), 311.
20.       Tzabar N.,Kaplansky A., "A numerical cool-down analysis for Dewar-detector assemblies cooled with Joule–Thomson cryocoolers", Int. J. Ref., 2014, 4456.
21.       Hong Y.-J.,   Park S.-J.,   Kim H.-B.,Choi Y.-D., "The cool-down characteristics of a miniature Joule–Thomson refrigerator", Cryogenics, 2006, 46(5), 391.
22.       Valenti G.,   Macchi E.,Brioschi S., "The influence of the thermodynamic model of equilibriumhydrogen on the simulation of its liquefaction", Int. J. Hydrogen Energy, 2012, 3710779.
23.       Younglove B. A., Thermophysical properties of fluids. I. Argon, ethylene, parahydrogen, nitrogen, nitrogen trifluoride, and oxygen. 1982, DTIC Document.
24.       McCarty R. D.,   Hord J.,Roder H., Selected properties of hydrogen (engineering design data). 1981, National Engineering Lab.(NBS), Boulder, CO (USA).
25.       Xin R.,Ebadian M., "The effects of Prandtl numbers on local and average convective heat transfer characteristics in helical pipes", J. Heat Transfer, 1997, 119(3), 467.