[1] Larminie, J., Dicks, A., Fuel Cell Systems Explained, John Wiley & Sons Ltd., New York, 2000.
[2] Williams, M.C., 7th ed., Fuel Cell Handbook, EG&G Technical Services, Inc., 2004.
[3] Ozgoli, H.A., Ghadamian, H., Roshandel, R., Moghadasi, M., “Alternative Biomass Fuels Consideration Exergy and Power Analysis for a Hybrid System Includes PSOFC and GT Integration”, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2015, 37: 1962-1970.
[4] Ozgoli, H.A., Ghadamian, H., Farzaneh, H. “Energy Efficiency Improvement Analysis Considering Environmental Aspects in Regard to Biomass Gasification PSOFC-GT Power Generation System”, Procedia Environmental Sciences, 2013, 17: 831-841.
[5] Ghadamian, H., Hamidi, A.A., Farzaneh, H., Ozgoli, H.A., “Thermo-economic analysis of absorption air cooling system for pressurized solid oxide fuel cell/gas turbine cycle”, Journal of Renewable and sustainable Energy, 2012, 4: 1-14.
[6] Ozgoli, H.A., Ghadamian, H., Hamidi, A.A., “Modeling SOFC & GT Integrated-Cycle Power System with Energy Consumption Minimizing Target to Improve Comprehensive cycle Performance (Applied in pulp and paper, case studied)”, International Journal of Engineering Technology, 2012, 1: 1-6.
[7] Ozgoli, H.A., Moghadasi, M., Farhani, F., Sadigh, M. “Modeling and Simulation of an Integrated Gasification SOFC-CHAT Cycle to Improve Power and Efficiency”, Environmental Progress & Sustainable Energy, 2017, 36: 610-618.
[8] Tsiakaras, P., Demin, A., “Thermodynamic analysis of a solid oxide fuel cell system fuelled by ethanol”, Journal of Power Sources, 2010, 102: 210-217.
[9] Braun, R.J., Klein, S.A., Reindl, D.T., “Evaluation of system configurations for solid oxide fuel cell-based micro-combined heat and power generators in residential applications”, Journal of Power Sources, 2005, 158: 1290-1305.
[10] Powell, M., Meinhardt, K., Sprenkle, V., Chick, L., McVay, G., “Demonstration of a highly efficient solid oxide fuel cell power system using adiabatic steam reforming and anode gas recirculation”, Journal of Power Sources, 2012, 205: 377–384.
[11] Halinen, M., Rautanen, M., Saarinen, J., Pennanen, J., Pohjoranta, A., Kiviaho, J., Pastula, M., Nuttall, B., Rankin, C., Borglum, B., “Performance of a 10 kW SOFC Demonstration Unit”, ECS Transactions, 2011, 35: 113–120.
[12] Halinen, M., Pohjoranta, A., Kujanpää, L., Väisänen, V., Salminen, P., “Summary of the RealDemo – project 2012-2014”, VTT Technical Research Centre of Finland, 2014.
[13] Yakabe, H., Ogiwara, T., Hishinuma, M., Yasuda, I., “3-D model calculation for planar SOFC”, Journal of Power Sources, 2001, 102: 144-154.
[14] Aguiar, P., Adjiman, C. S., Brandon, N. P., “Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state”, Journal of Power Sources 2004, 138: 120-136.
[15] Sanchez, D., Chacartegui, R., Munoz, A., Sanchez, T., “On the effect of methane internal reforming modelling in solid oxide fuel cells”, International Journal of Hydrogen Energy, 2008, 33: 1834-1844.
[16] Al-Sulaiman, F. A., Dincer, I., Hamdullahpur, F., “Energy analysis of a trigeneration plant based on solid oxide fuel cell and organic Rankine cycle”, International Journal of Hydrogen Energy, 2010, 35: 5104–5113.
[17] Meshcheryakov, V. D., Kirillov, V. A., Sobyanin, V. A., “Thermodynamic Analysis of a Solid Oxide Fuel Cell Power System with External Natural Gas Reforming”, Theoretical Foundations of Chemical Engineering, 2006, 40: 51–58.
[18] Becker, W.L., Braun, R.J., Penev, M., Melaina, M., “Design and technoeconomic performance analysis of a 1 MW solid oxide fuel cell polygeneration system for combined production of heat, hydrogen, and power”, Journal of Power Sources, 2012, 200: 34–44.
[19] Colson, C. M., Nehrir, M. H., “Evaluating the Benefits of a Hybrid Solid Oxide Fuel Cell Combined Heat and Power Plant for Energy Sustainability and Emissions Avoidance”, IEEE Transactions on Energy Conversion, 2011, 26: 141-148.
[20] US Department of Energy, National Energy Technology Laboratory, and RDS, “Natural Gas-Fueled Distributed Generation Solid Oxide Fuel Cell Systems”, 2009.
[21] Chick, L., Weimar, M., Whyatt, G., Powell, M., “The Case for Natural Gas Fueled Solid Oxide Fuel Cell Power Systems for Distributed Generation”, Fuel Cells, 2015, 15: 49–60.
[22] Geerssen, T.M., “Physical properties of natural gases, Properties of Groningen Natural Gas”, N.V. Nederlandse Gasunie, 1988, page 31.
[23] Haussinger, L.R., Watson, A., “UllmannÕs Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co.”, Weinheim, Germany, http://www.wiley-vch.de, online edition, 2002.
[24] Hoogers, G., Fuel Cell Technology Handbook, chapter 5, The Fueling Problem: Fuel Cell Systems, CRC Press LLC, 2003.
[25] Rostrup-Nielsen, J.R., Sehested, J., Norskov, J.K., “Hydrogen and synthesis gas by steam and CO2 reforming,” Advances in Catalysis, 2002, 47: 65-139.
[26] Valenzuela, M.A., Zapata, B., Hydroprocessing of Heavy Oils and Residual, Taylor & Francis Group, LLC, 2007.
[27] Newsome, D.S., The water-gas shift reaction. Catalysis Reviews, 1980, Available in: http://dx.doi.
org/10.1080/03602458008067535.
[28] Singhal, S.C., Kendall, K., High Temperature Solid Oxide Fuel Cells, Fundamentals, Design and Applications. ISBN: 1856173879. Elsevier, 2003.
[29] Bove, R., Ubertini, S., Modeling Solid Oxide Fuel Cells. Springer, 2008.
[30] O’Hayre, R.P., Cha, S.W., Colella, W., Prinz, F.B., Fuel Cell Fundamentals. ISBN: 0471741485. John Wiley & Sons, INC., 2006.
[31] Lisbona, P., Corradetti, A., Bove, R., Lunghi, P., “Analysis of a solid oxide fuel cell system for combined heat and power applications under non-nominal conditions,” Electrochimica Acta, 2007, 53: 1920-1930.
[32] Toonssen, R., “Sustainable Power from Biomass, Comparison of technologies for centralized or de-centralized fuel cell systems”, PhD thesis, TU Delft, 2010.
[33] Hazarika, M.M., Ghosh, S., “Simulated Performance Analysis of a GT-MCFC Hybrid System Fed with Natural Gas”, International Journal of Emerging Technology and Advanced Engineering, 2013, 3: 292-298.