[1] William J., Matthew B., "An overview of hydrogen safety sensors and requirements", International Journal of Hydrogen Energy, 2011, 36: 2462.
[2] Hübert T., Boon-brett L. , GBanach U., "Sensors and Actuators B: Chemical Hydrogen sensors – A review", 2011, 157:329.
[3] Hitchcock C. H. S., "Determination of Hydrogen as a Marker in Irradiated Frozen Food", Sci. Food Agric, 2000, 80:131.
[4] Wadell C., Syrenova S., Langhammer C., "Plasmonic Hydrogen Sensing with Nanostructured Metal Hydrides", American Chemical Society, 2014, 11925.
[5] Manthiram K., Alivisatos A., "Tunable Localized Surface Plasmon Resonances in Tungsten Oxide Nanocrystals", Am. Chem. Soc, 2012, 134: 3995.
[6] Katherine A., Willets and Richard P., Van D., "Localized Surface Plasmon Resonance Spectroscopy and Sensing", Annu. Rev. Phys. Chem, 2007, 58: 267.
[6] Kim, S.; Park, S., Lee, C. (2015); “Acetone sensing of Au and Pd-decorated WO3 nanorod sensors”; Sensors and Actuators B: Chemical; No. 209; pp.180.
[7] Kim S., Park S., Lee C., "Acetone sensing of Au and Pd-decorated WO3 nanorod sensors", Sensors and Actuators B: Chemical, 2015, 209: 180.
[8]Filippo E., Serra A., Manno, D. "Poly(vinyl alcohol) capped silver nanoparticles as localized surface Plasmon resonance-based hydrogen peroxide sensor", Sensors and Actuators B, 2009, 138:625.
[9] Choi S.W., Katoch A., Sun G.J., Kim S.S., "Bimetallic Pd/Pt nanoparticle-functionalized SnO2 nanowires for fast response and recovery to NO2", Sens.Actuators B, 2013, 181:446.